Category Archives: physicisrs

Einstein told Banesh Hoffmann, “I am slow…!”

Picked up from Reader’s Digest: Indian Edition: March 2020 : just for the joy of sharing and learning with my students. 

January 1968: The Unforgettable Albert Einstein: A professor remembers his encounters with Albert Einstein, and pays a glowing tribute to the man’s genius and his many accomplishments.

By Banesh Hoffmann:


It was one of the greatest scientists the world has ever known, yet if I had to convey the essence of Albert Einstein in a single word, I would choose ‘simplicity’. Perhaps, an anecdote will help. Once, caught in a downpour, he took off his hat and held it under his coat. Asked why, he explained, with admirable logic, that the rain would damage the hat, but his hair would be none the worse for its wetting. This knack for going instinctively to the heart of the matter was the secret of his major scientific discoveries — this and his extraordinary feeling for beauty.

I first met Albert Einstein in 1935, at the famous Institute for Advanced Study in Princeton, New Jersey. Einstein had been among the first to be invited to the Institute, and was offered carte blanche as to salary. To the director’s dismay, Einstein asked for an impossible sum. It was far too small !! The director had to plead with him to accept a larger salary.

I was awe in of Einstein, and hesitated before approaching him about some ideas I had been working on. My hesitation proved unwarranted. When I finally knocked on his door, a gentle voice said, “Come” — with a rising inflection that made the single word both a welcome and a question. I entered his office and found him seated on a table, calculating and smoking his pipe. Dressed in ill-fitting clothes, his hair characteristically awry, he smiled a warm welcome. His utter naturalness at once set me at ease.

As  I began to explain my ideas, he asked me to write the equations on blackboard so that he could see how they developed. Then, came the staggering — and altogether endearing —request: “Please go slowly. I do not understand things quickly.” This from Einstein ! He said it gently, and I laughed. From then on, all vestiges of fear were gone. 

BURST OF GENIUS Einstein was born in 1879 in the German city of Ulm. He had been no infant prodigy; indeed, he was so late in learning to speak that his parents feared he was a dullard. In school, though his teachers saw no special talent in him, the signs were already there. He taught himself calculus, for example, and he told me that his teachers seemed a little afraid of him because he asked questions that they could not answer. At the age of 16, he asked himself whether a light wave would seem stationary if one ran abreast of it. It seems an innocent question, but this shows Einstein going to the heart of a problem. From it there would arise, 10 years later, his theory of relativity.

Einstein failed his entrance examinations at the Swiss Federal Polytechnic School in Zurich, but was admitted a year later. There he went beyond his regular work to study the masterworks of physics on his own. Rejected when he applied for academic positions, he ultimately found work, in 1902, as a patent examiner in Berne, and there, in 1905, his genius burst into fabulous flower.

Among the extraordinary things he produced in that memorable year were his theory of relativity, with its famous offshoot E = mc^{2} (energy equals mass times the speed of light squared), and his quantum theory of light. These two theories were not only revolutionary but seemingly self-contradictory as well: the former was intimately linked to the theory that light consists of waves, while the latter said that it consists of somehow of particles. Yet this unknown young man boldy proposed both at once — and he was right in both cases, though how he could possibly have been is far too complex a story to tell here.


Collaborating with Einstein was an unforgettable experience. In 1937, the Polish physicist Leopold Infeld and I asked if we could work with him. He was pleased with the proposal, since he had an idea about gravitation waiting to be worked out in detail. Thus, we got to know not merely the man and the friend, but also the professional.

The intensity and depth of his concentration were fantastic. When battling a recalcitrant problem, he worried it as an animal worries its prey. Often, when we found ourselves up against a seemingly insuperable difficulty, he would stand up, put his pipe on the table, and say in his quaint English, “I will a little tink” (he could not pronounce “th”). Then, he would pace up and down, twirling a lock of his long greying hair around his forefinger.

A dreamy, faraway yet inward look would come over his face. There was no appearance of concentration, no furrowing of his brow — only a placid inner communion. The minutes would pass, and then suddenly Einstein would stop pacing as his face relaxed into a gentle smile. He has found the solution to the problem. Sometimes it was so simple that Infeld and I could have kicked ourselves for not having thought of it. But the magic had been performed invisibly in the depths of Einstein’s mind, by a process we could not fathom.

When his wife died, he was deeply shaken, but insisted that now more than ever was the time to be working hard. I vividly remember going to his house to work with him during that sad time. His face was haggard and grief-lined but he put forth a great effort to concentrate. Seeking to help him, I steered the discussion away from routine matters into more difficult theoretical problems, and Einstein gradually became absorbed in the discussion. We kept at it for some two hours, and at the end his eyes were no longer sad. As I left, he thanked me with moving sincerity, but the words he found sounded almost incongruous. “It was a fun,” he said. He had a moment of surcease from grief, and these groping words expressed a deep emotion.


Although Einstein felt no need for religious ritual and belonged to no formal religious group, he was the most deeply religious man I have known. He once said to me, “ideas come from God,” and one could hear the capital ‘G’ in the reverence with which he pronounced the word. On the marble fireplace in the mathematics building at Princeton University is carved, in the original German, what one might call his scientific credo: God is subtle, but He is not malicious.” By this Einstein meant that scientists could expect to find their task difficult, but not hopeless. The Universe was a Universe of law, and God was not confusing with deliberate paradoxes and contradictions.

Einstein was an accomplished amateur musician. We used at play duets; he at the violin, I at the piano. One day he surprised me by saying that Mozart was the greatest composer of all. Beethoven, he said, “created” his music but the music of Mozart was of such purity and beauty that one felt he merely “found” it — that it had always existed as part of the inner beauty of the Universe, waiting to be revealed.

It was this very Mozartian simplicity that most characterized Einstein’s methods. His 1905 theory of relativity, for example, was built on two simple assumptions. One is the so-called principle of relativity, which means, roughly speaking, that we cannot tell whether we are at rest or moving smoothly. The other assumption is that the speed of light is the same, no matter what the speed of the object that produces it. You can see how reasonable this is if you think of agitating a stick in a lake to create waves. Whether you wiggle the stick from a stationary pier. or from a rushing speedboat, the waves once generated are on their own, and their speed has nothing to do with that of the stick.

Each of these assumptions, by itself, was so plausible as to seem primitively obvious. But. together they were in such violent conflict that a lesser man would have dropped one or the other and fled in panic. Einstein daringly kept both — and by doing so he revolutionized physics. For he demonstrated that they could after all, exist peacefully side by side, provided we give up cherished beliefs about the nature of time.

Science is like a house of cards, with concepts like time and space at the lowest level. Tampering with time brought most of the house tumbling down, and it was this made Einstein’s work so important —- and so controversial. At a conference in Princeton in honour of his 70th birthday, one of the speakers, a Nobel prize winner, tried to convey the magical quality of Einstein’s achievement. Words failed him, and with a shrug of helplessness he pointed to his wrist-watch, and said in tones of awed amazement, “It all came from this.” His very ineloquence made this the most eloquent tribute I have heard to Einstein’s genius.


Although fame had little effect on Einstein as a person, he could not escape it; he was, of course, instantly recognizable. One autumn Saturday, I was walking with him in Princeton discussing some technical matters. Parents and almuni were streaming excitedly toward the stadium, their minds on the coming football game. As they approached us, they paused in sudden recognition, and a momentary air of solemnity came over them as if they had been reminded of a world far removed from the thrills of football. Yet Einstein seemed totally unaware of the effect he was having on them, and went on with the discussion as though they were not there.

We think of Einstein as one concerned only with the deepest aspects of science. But he saw scientific principles in every day things to which most of us would give barely a second thought.He once asked me if I had ever wondered why a man’s feet will sink into either dry or completely submerged sand, while sand that is merely damp provides a firm surface. When I could not answer, he offered a simple explanation. It depends, he pointed out, on surface tension, the elastic-skin effect of a liquid surface. This is what holds a drop together, or causes two small raindrops on a window pane to pull into one big drop the moment their surfaces touch.

When sand is damp, Einstein explained, there are tiny amounts of water between the grains. The surface tensions of these tiny amounts of water pull all the grains together, and friction then makes them hard to budge. When the sand is dry, there is obviously no water between grains. If the sand is fully immersed, there is water between grains, but there is no water surface between them to pull them together. This is not as important as relativity; yet as his youthful question, about running abreast of a light wave showed, there is no telling what seeming trifle will lead an Einstein to a major discovery. And, the puzzle of the sand gives us an inkling of the power and elegance of Einstein’s mind.


Einstein’s work, performed with pencil and paper, seemed remote from the turmoil of everyday life. But his ideas were so revolutionary that they caused violent controversy and irrational anger. Indeed, in order to be able to award him a belated Nobel Prize, the selection committee had to avoid mentioning relativity, and pretend that his prize was primarily due to his work on quantum theory. Political events upset the serenity of his life even more. When the Nazis came to power in Germany, his theories were officially declared false because they had been formulated by a Jew. His property was confiscated, and it is said that a price was put on his head.

When scientists in the United States fearful that the Nazis might develop an atomic bomb, sought to alert American authorities to that danger, they were scarcely heeded. In desperation, they drafted a letter, which Einstein signed and sent directly to President Roosevelt. It was this act that led to the fateful decision to go all-out on the production of an atomic bomb — an endeavour in which Einstein took no active part. When he heard of the agony and destruction that his E=mc^{2} had wrought, he was dismayed beyond measure and from then on there was a look of ineffable sadness in his eyes.

There was something elusively whimsical about Einstein. It is illustrated by my favourite anecdote about him. In his first year in Princeton, on Christmas Eve, so the story goes, some children sang carols outside his house. Having finished, they knocked on his door and explained that they were collecting money to buy Christmas presents. Einstein listened then said, “Wait a moment.” He put on his scarf and overcoat, and took his violin from its case. Then, joining the children, he accompanied their singing of “Silent Night” on his violin.

How shall I sum up what it meant to have known Einstein and his work? Like the Nobel prize winner who pointed helplessly at his watch, I can find no adequate words. It was akin to the revelation of the great art that lets one see what was formerly hidden. And, when for example, I walk on the sand of a lonely beach, I am reminded of his ceaseless search for cosmic simplicity —- and the scene takes on a deeper, sadder beauty.



Nalin Pithwa.

PS: Thinking takes time, practice, perseverance and solitude. The reward of an intellectual discovery, mathematical or other, is far richer and complete than instant gratification. :-))

Yet another little portrait of Hermann Weyl: as painted by John Archibald Wheeler


The Continuum, Hermann Weyl, translated by Stephen Pollard and Thomas Bole.

This is what famous physicist, John Archibald Wheeler writes as the foreword:

Hermann Weyl was-is-for many of us, and for me, a friend, a teacher, and a hero. A North German who became an enthusiastic American, he was a mathematical master figure to mathematicians, and to physicists a pioneer in quantum theory and relativity and discoverer of gauge theory. He lives for us today, and will live in time to come, in his great findings, his papers and books, and his human influence.

I last knew Weyl after I last knew him. Day after day in Zurich in late 1955 he had been answering letters of congratulations and good wishes received on his seventieth birthday, walking to the mailbox, posting them, and returning home. December eighth, thus making his way homeward, he collapsed on the sidewalk and murmuring, “Ellen, died. News of his unexpected death reached Princeton by the morning New York Times. Some days later our postman brought my wife and me Weyl’s warm note of thanks. I like to think he sent it in that last mailing.

I first knew Weyl before I first knew him. Picture a youth of nineteen seated in a Vermont hillside pasture, at his family’s summer place, with grazing cows around, studying Weyl’s great book, Theory of Groups and Quantum Mechanics, sentence by sentence, in the original German edition, day after day, week after week. That was one student’s introduction to quantum theory. And what an introduction it was! His style is that of a smiling figure on horseback, cutting a clean way through, on a beautiful path, with a swift bright sword.

Some years ago I was asked, like others, I am sure, to present to the Library of the American Philosophical Society the four books that had most influenced me. Theory of Groups and Quantum Mechanics was not last on my list. That book has, each time I read it, some great new message.

If I had to come up with a single word to characterize Hermann Weyl, the man, as I saw and knew him then and in the years to come, it would be that old fashioned word, so rarely heard in out day, “nobility.” I use it here not only in the dictionary sense of “showing qualities of high moral character, as courage, generosity, honour,” but also in the sense of showing exceptional vision. Weyl’s eloquence in pointing out the peaks of the past in the world of learning and his aptitude in discerning new peaks in newly developing fields of thought surely were part and parcel of his lifelong passion for everything that is high in nature and man.

Erect, bright-eyed, smiling Hermann Weyl I first saw in the flesh when 1937 brought me to Princeton. There I attended his lectures on the Elie Cartan calculus of differential forms and their application to electromagnetism — eloquent, simple, full of insights. Little did I dream that in thirty-five years I would be writing, in collaboration with Charles Misner and Kip Thorne, a book on gravitation, in which two chapters would be devoted to exactly that topic. At another time Weyl arranged to give a course at Princeton University on the history of mathematics. He explained to me one day that it was for him an absolute necessity to review, by lecturing, his subject of concern in all its length and breadth. Only so, he remarked, could he see the great lacunae, the places where deeper understanding is needed, where work should focus.

The man who ranged so far in his thought had mathematics as the firm backbone of his intellectual life. Distinguished as a physicist, as a philosopher, as a thinker, he was above all a great mathematician, serving as professor of mathematics from 1913 to 1930 at Zurich, from 1930 to 1933 at Gottingen, and at the Princeton Institute for Advanced Study from October 1933 to his retirement. What thinkers and currents of thought guided Weyl into his lifework: mathematics, philosophy, physics?

“As a schoolboy,” he recalls, “I came to know Kant’s doctrine of the ideal character of space and time, which at once moved me powerfully.” He was still torturing himself, he tells us, with Kant’s Schematismus der reinen Verstandesbegriffe when he arrived as a university student at Gottingen. That was one year before special relativity burst on the world. What a time to arrive, just after David Hilbert, world leader of mathematics, had published his Grundlagen der Geometrie, breaking with Kant’s predisposition for Euclidean geometry and taking up, in the great tradition of Karl Friedrich Gauss and Bernhard Riemann, the construction and properties of non-Euclidean geometries, and — having just published an important book on number theory Zahlericht — was giving absorbing lectures on that field of research. Philosophy! Mathematics! Physics! Each was sounding its stirring trumpet blast to an impressionable young man. Mathematics, being represented in Gottingen by its number one man, won the number one place in Weyl’s heart.

Weyl tells us the impression made upon him by Hilbert’s irresistible optimism, “his spiritual passion, his unshakable faith in the supreme value of science, and his firm confidence in the power of reason to find simple and clear answers to simple and clear questions.” No one who in his twenties had the privilege to listen to Weyl’s lectures can fail to turn around and apply to Weyl himself those very words. Neither can anyone who reads Weyl, and admires his style, fail to be reminded of Weyl’s own writing by what he says of the lucidity of Hilbert: “It is as if you are on a swift walk through a sunny open landscape; you look freely around, demarcation lines and connecting roads are pointed out to you before you must brace yourself to climb the hill; then the path goes straight up, no ambling around, no detours.”

Electrified by Leibnitz and Kant, and under the magnetic influence of Hilbert, Weyl leaped wholeheartedly, as he later put it, into “the deep river of mathematics.” That leap marked the starting point of his lifelong contributions to ever widening spheres of thought.

For the advancing army of physics, battling for many a decade with heat and sound, fields and particles, gravitation and spacetime geometry, the cavalry of mathematics, galloping out ahead, provided what it thought to be the rationale for the real number system. Encounter with the quantum has taught us, however, that we acquire our knowledge in bits; that the continuum is forever beyond our reach. Yet for daily work the concept of the continuum has been and will continue to be as indispensable for physics as it is for mathematics. In either field of endeavour, in any given enterprise, we can adopt the continuum and give up absolute logical rigour, or adopt rigour and give up the continuum, but we can’t pursue both approaches at the same time in the same application.

Adopt rigour or adopt the contiuum ? These ways of speaking should not be counted as contradictory, but as complementary. This complementarity between the continuum and logical rigour we accept and operate with today in the realm of mathematics. The hard-won power thus to assess correctly the continuum of the natural numbers grew out of titanic struggles in the realm of mathematical logic in which Hermann Weyl took a leading part. His guidance, his insights and his wisdom shine out afresh to the English-speaking world with the publication of the present volume. The level of synthesis achieved by now in mathematics is still far beyond our reach today in physics. Happily the courageous outpost-cavalry of mathematical logic prepares the way, not only for the main cavalry that is mathematics, but also for the army that is physics, and nowhere more critically so than in its assault on the problem of existence.

Hermann Weyl has not died. His great works speak prophecy to us in this century and will continue to speak wisdom in the coming century. If we seek a single word to stand for the life and work of Hermann Weyl, what better word can we find than passion? Passion to understand the secret of existence was his, passion for that clear, luminous beauty of conception which we associate with the Greeks, passionate attachment to the community of learning, and passionate belief in the unity of knowledge.

— John Archibald Wheeler, University of Texas, Austin.

Richard Feyman: colourful life.

Thanks to Hindustan Times and Rachel Lopez.


Remembering Richard Feynman on his 100th birth centenary

Thanks to Hindustan Times and Prof. Arnab Bhattacharya, TIFR, Mumbai.

Stephen Hawking in his own words: excerpts: My Brief History

I. Another early memory was getting my first train set. Toys were not manufactured during the war, at least not for the home market. But, I had a passionate interest in model trains. My father tried making me a wooden train, but that didn’t satisfy me, as I wanted something that moved on its own. So, he got a secondhand clockwork train, repaired it with a soldering iron, and gave it to me for Christmas when I was nearly three. That train didn’t work very well. But my father went to America just after the war, and when he came back on the Queen Mary he bought my mother some nylons, which were not obtainable in Britain at that time. He bought my sister Mary a doll that closed its eyes when you laid it down. And he brought me an American train, complete with a cowcatcher and a figure-eight track. I can still remember my excitement as I opened the box.

Clockwork trains, which you had to wind up, were all very well, but I really wanted were electric trains. I used to spend hours watching a model railway club layout in Crouch End, near Highgate. I dreamed about electric trains. Finally, when both my parents were away somewhere, I took the opportunity to draw out of the Post Office bank all of the very modest amount of money that people had given me on special vacations, such as my christening. I used the money to buy an electric train set, but frustratingly enough, it didn’t work very well either. I should have taken the set back and demanded that the shop or the manufacturer replace it, but in those days the attitude was that it was a privilege to buy something and it was just your bad luck, if it turned out to be faulty. So, I paid for the electric motor of the engine to be serviced, but it never worked very well, even then.

Later on, in my teens, I built model aeroplanes and boats. I was never very good with my hands, but I did this with my school friend John McClenahan, who was much better and whose father had a workshop in their house. My aim was always to build working models that I could control. I didn’t care what they looked like. I think it was the same drive that led me to invent a series of very complicated games with another school friend, Roger Ferneyhough. There was a manufacturing game, complete with factories in which units of different colours were made, roads and railways on which they were carried, and a stock market. There was a war game, played on a board of 4000 squares, and even a feudal game, in which each player was a whole dynasty, with a family tree. I think these games, as well as the trains, boats, and aeroplanes, came from an urge to know how systems worked and how to control them. Since I began my PhD, this need has been met by research into cosmology. If you understand how the universe operates, you control it, in a way.

II. When I was thirteen, my father wanted me to try for Westminister School, one of Britain’s main public schools (what in the United States are called private schools). At that time, there was a sharp division in education along class lines, and my father felt that the social graces such a school would give me would be an advantage in life. My father believed that his own lack of poise and connections had led to him being passed over in his career in favour of people of less ability. He had a bit of a chip on his shoulder because he felt that other people who were not as good but who had the right background and connections had got ahead of him. He used to warn me against such people.

Because my parents were not well-off, I would have to win a scholarship in order to attend Westminister. I was ill at the time of the scholarship examination, however, and did not take it. Instead, I remained at St. Albans School, where I got an education that was as good as, if not better than, the one I would have had at Westminister. I have never found that my lack of social graces has been a hindrance. But I think physics is a bit different from medicine. In physics it doesn’t matter what school you went to or whom you are related. It matters what you do.

I was never more than about halfway up the class (it was a very bright class.) My classwork was untidy, and my handwriting was the despair of my teachers. But, my classmates gave me the nickname Einstein, so presumably they saw signs of something better. When I was twelve, one of my friends bet another friend a bag of sweets that I would never amount to anything. I don’t know if this bet was ever settled, and if so, which way it was decided.

I had six or seven close friends, most of whom I’m still in touch with. We used to have long discussions and arguments about everything from radio-controlled models to religion and from parapsychology to physics. One of the things we talked about was the origin of the universe and whether it had required a God to create it and set it going. I had heard that light from distant galaxies was shifted towards the red end of the spectrum and that this was supposed to indicate that the universe was expanding. (A shift towards the blue would have meant it was contracting.) But, I was sure there must be some other reason for the red shift. An essentially unchanging and everlasting universe seemed so much more natural. Maybe light just got tired, and more red, on its way to us, I speculated. It was only after about two years of PhD research that I realized that I had been wrong.

I was always very interested in how things operated, and I used to take them apart to see how they worked, but I was not so good at putting them back together again. My practical abilities never matched up to my theoretical inquiries. My father encouraged my interest in science, and he even coached me in mathematics until I got to a stage beyond his knowledge. With this background and my father’s job, I took it as natural that I would go into scientific research.

When I came to the last two years of school, I wanted to specialize in mathematics and physics. There was an inspiring maths teacher, Mr. Tanta, and the school had also just built a new maths room, which the maths set had as their classroom. But my father was very much against it because he thought there wouldn’t be any jobs for mathematicians except as teachers. He would really have liked me to do medicine, but I showed no interest in biology, which seemed to me to be too descriptive and not sufficiently fundamental. It also had a rather low status at school. The brightest boys did mathematics and physics; the less bright did biology.

My father knew I wouldn’t do biology, but he made me do chemistry and only a small amount of mathematics. He felt this would keep my scientific options open. I am now professor of mathematics, but I have not had any formal instruction in mathematics since I left St. Albans School at the age of seventeen. I have had to pick up what I know as I went along. I used to supervise undergraduates at Cambridge and kept one week ahead of them in the course.

Physics was always the most boring subject at school because it was so easy and obvious. Chemistry was much more fun because unexpected things, such as explosions kept happening. But physics and astronomy offered the hope of understanding where we came from and why we are here. I wanted to fathom the depths of the universe. Maybe I have succeeded to a small extent, but there’s still plenty I want to know.

III. My early work showed that classical general relativity broke down at singularities in the Big Bang and black holes. My later work has shown how quantum theory can predict what happens at the beginning and end of time. It has been a glorious time to be alive and doing research in theoretical physics. I’m happy if I have added something to our understanding of the universe.

A humble tribute to Professor Hawking …to understand him from a layman’s viewpoint…by Nalin Pithwa.

Reference: My Brief History by Stephen Hawking, Bantam Press.

Amazon India link: