Category Archives: mathematicians

The personality of Leonhard Euler

The portrait of Euler that emerges from his publications and letters is that of a genial man of simple tastes and conventional religious faith. He was even wealthy, at least in the second half of his life, but ostentation was not part of his lifestyle. His memory was prodigious, and contemporary accounts have emphasized this. He would delight relatives, friends, and acquaintances with a literal recitation of any song from Virgil’s Aenesis, and he would remember minutes of Academy meetings years after they were held. He was not given to envy, and when someone made an advance on his work his happiness was genuine. For example, when he learnt of Lagrange’s improvements on his work on elliptic integrals, he wrote to him that his admiration knew no bounds and then proceeded to improve upon Lagrange!

But, what is most characteristic of his work is its clarity and openness. He never tries to hide the difficulties from the reader. This is in stark contrast to Newton, who was prone to hide his methods in obscure anagrams, and even from his successor, Gauss, who very often erased his steps to present a monolithic proof that was seldom illuminating. In Euler’s writings there are no comments on how profound his results are, and in his papers one can follow his ideas step by step with the greatest of ease. Nor was he chary of giving credit to others; his willingness to share his summation formula with Maclaurin, his proper citations to Fuguano when he started his work on algebraic integrals, his open admiration for Lagrange when the latter improved on his work in calculus of variations are all instances of his serene outlook. One can only contrast this with Gauss’s reaction to Bolyai’s discovery of non-Euclidean postulates. Euler was secure in his knowledge of what he had achieved but never insisted that he should be the only one on top of the mountain.

Perhaps, the most astounding aspect of his scientific opus is its universality. He worked on everything that had any bearing on mathematics. For instance, his early training under Johann Bernoulli did not include number theory; nevertheless, within a couple of years after reaching St. Petersburg he was deeply immersed in it, recreating the entire corpus of Fermat’s work in that area and then moving well beyond him. His founding of graph theory as a separate discipline, his excursions in what we call combinatorial topology, his intuition that suggested to him the idea of exploring multizeta values are all examples of a mind that did not have any artificial boundaries. He had no preferences about which branch of mathematics was dear to him. To him, they were all filled with splendour, or Herrlichkeit, to use his own favourite word.

Hilbert and Poincare were perhaps last of the universalists of modern era. Already von Neumann had remarked that it would be difficult even to have a general understanding of more than a third of the mathematicians of his time. With the explosive growth of mathematics in the twentieth century we may never see again the great universalists. But who is to say what is and is not possible for the human mind?

It is impossible to read Euler and not fall under his spell. He is to mathematics what Shakespeare is to literature and Mozart to music: universal and sui generis.

Reference:

Euler Through Time: A New Look at Old Themes by V S Varadarajan:

Hindustan Book Agency;

http://www.hindbook.com/index.php/euler-through-time-a-new-look-at-old-themes;

Amazon India link:

https://www.amazon.in/Euler-Through-Time-Look-Themes/dp/9380250592/ref=sr_1_1?keywords=Euler+Through+Time&qid=1568316624&s=books&sr=1-1

 

 

You and your research ( You and your studies) : By Richard Hamming, AT and T, Bell Labs mathematician;

Although the title is grand (and quite aptly so)…the reality is that it can be applied to serious studies for IITJEE entrance, CMI entrance, highly competitive math olympiads, and also competitive coding contests…in fact, to various aspects of student life and various professional lifes…

Please read the whole article…apply it wholly or partially…modified or unmodified to your studies/research/profession…these are broad principles of success…

https://www.cs.virginia.edu/~robins/YouAndYourResearch.html

 

What motivated Einstein?

The most beautiful thing that we can experience is the mysterious. It is the source of all true art and sciences.

— Albert Einstein, in What I believe, 1930.

E. T. Bell’s Men of Mathematics, John Nash, Jr., genius mathematician, Nobel Laureate and Abel Laureate; and Albert Einstein

(From A Beautiful Mind by Sylvia Nasar)

The first bite of mathematical apple probably occurred when Nash at around age thirteen or fourteen read E. T. Bell’s extra ordinary book Men of Mathematics — an experience he alludes to in his autobiographical essay (of Nobel Prize, Economics) Bell’s book, which was published in 1937, would have given Nash the first glimpse of real mathematics, a heady realm of symbols and mysteries entirely unconnected to the seemingly arbitrary and dull rules of arithmetic and geometry taught in school or even in the entertaining but ultimately trivial calculations that Nash carried out in the course of chemistry and electrical experiments.

Men of Mathematics consists of lively — and, as it turns out, not entirely accurate — biographical sketches. Its flamboyant author, a professor of mathematics at California Institute of Technology, declared himself disgusted with “the ludicrous untruth of the traditional portrait of the mathematician” as a “slovenly dreamer totally devoid of common sense.” He assured his readers that the great mathematicians of history were an exceptionally virile and even adventuresome breed. He sought to prove his point with vivid accounts of infant precocity, monstrously insensitive educational authorities, crushing poverty, jealous rivals, love affairs, royal patronage, and many varieties of early death, including some resulting from duels. He even went so far in defending mathematicians as to answer the question : “How many of the great mathematicians have been perverts?” None, was his answer. ‘Some lived celibate lives, usually on account of economic disabilities, but the majority were happily married…The only mathematician discussed here whose life might offer something of interest to a Freudian is Pascal.’ The book became a bestseller as soon as it appeared.

What makes Bell’s account not merely charming, but intellectually seductive, are his lively descriptions of mathematical problems that inspired his subjects when they were young, and his breezy assurance that there were still deep and beautiful problems that could be solved by amateurs, boys of fourteen, to be specific. It was Bell’s essay on Fermat, one of the greatest mathematicians of all time, but a perfectly conventional seventeenth century French magistrate, whose life was “quiet, laborious and uneventful,” that caught Nash’s eye. The main interest of Fermat, who shares the credit for inventing calculus with Newton and analytic geometry with Descartes, was number theory — “the higher arithmetic.” Number theory, investigates the natural relationships of those common whole numbers 1, 2, 3, 4, 5…which we utter almost as soon as we learn to talk.

For Nash, proving a theorem known as Fermat’s (Little) Theorem about prime numbers, those mysterious integers that have no divisors besides themselves and one produced an epiphany of sorts. Often mathematical geniuses, Albert Einstein and Bertrand Russell among them recount similar revelatory experiences in early adolescence. Einstein recalled the “wonder” of his first encounter with Euclid at age twelve:

“Here were assertions, as for example the intersection of three altitudes of a triangle at one point which — though by no means evident — could nevertheless be proved with such certainty that any doubt appeared to be out of the question. This lucidity and certainty made an indescribable impression on me.”

Nash does not describe his feelings when he succeeded in devising a proof for Fermat’s assertion that if n is any whole number and p any prime number, then n multiplied by itself p times minus p is divisible by p. But, he notes the fact in his autobiographical essay, and his emphasis on this concrete result of his initial encounter with Fermat suggests that the thrill of discovering and exercising his own intellectual powers — as much as any sense of wonder inspired by hitherto unsuspected patterns and meanings — was what made this moment such a memorable one. That thrill has been decisive for many a future mathematician. Bell describes how success in solving a problem posed by Fermat led Carl Friedrich Gauss, the renowned German mathematician, to choose between two careers for which he was similarly talented. ‘It was this discovery …which induced the young man to choose mathematics instead of philology as his life work.”…

For those readers who are interested:

  1. Who wants to be a mathematician:

http://www.ams.org/publicoutreach/students/wwtbam/wwtbam

2. Resonance Journal (India):

https://www.ias.ac.in/Journals/Resonance_%E2%80%93_Journal_of_Science_Education/

3. Ramanujan School of Mathematics; Super30 of Prof Anand Kumar:

http://www.super30.org/rsm.html

Cheers,

Nalin Pithwa

 

 

 

The importance of lines and slopes

  1. Light travels along straight lines. In fact, the shortest distance between any two points is the path taken by a light wave to travel from the initial point to the final point. In other words, it is a straight line. (A slight detour: using this elementary fact, can you prove the triangle inequality?)
  2. Bodies falling from rest in a planet’s gravitational field do so in a straight line.
  3. Bodies coasting under their own momentum (like a hockey puck gliding across the ice) do so in a straight line. (Think of Newton’s First Law of Motion).

So we often use the equations of lines (called linear equations) to study such motions.

Many important quantities are related by linear equations. Once we know that a relationship between two variables is linear, we can find it from any two pairs of corresponding values just as we find the equation of a line from the coordinates of two points.

Slope is important because it gives us a way to say how steep something is (roadbeds, roofs, stairs, banking of railway tracks). The notion of a slope also enables us to describe how rapidly things are changing. (To philosophize, everything in the observable universe is changing). For this reason, slope plays an important role in calculus.

More later,

Nalin Pithwa.

PS: Ref: Calculus and Analytic Geometry by G B Thomas and Finney; or any other book on calculus.

PS: I strongly recommend the Thomas and Finney book : You can get it from Amazon India or Flipkart:

https://www.amazon.in/Thomas-Calculus-George-B/dp/9353060419/ref=sr_1_1?crid=36S3685TG7OYF&keywords=thomas+calculus&qid=1561503390&s=books&sprefix=Thomas+%2Caps%2C259&sr=1-1

or Flipkart:

https://www.flipkart.com/thomas-calculus-1/p/itmebug5kzrnttfj?pid=9789332547278&lid=LSTBOK9789332547278CHN4GH&marketplace=FLIPKART&srno=s_1_23&otracker=AS_Query_OrganicAutoSuggest_2_9&otracker1=AS_Query_OrganicAutoSuggest_2_9&fm=SEARCH&iid=fdc8327b-756c-4f6d-aa10-b45acc900e12.9789332547278.SEARCH&ppt=sp&ppn=sp&ssid=uz7zckp71c0000001561503474614&qH=2488f76736a10369

101 Careers in Mathematics: Andrew Sterrett, MAA publication

https://www.maa.org/press/maa-reviews/101-careers-in-mathematics

Shared by Nalin Pithwa — for spreading awareness in India also about career opportunities in maths/mathematics

 

 

Women in Science 2019 UNESCO Awards to Ingrid Daubechies and Claire Voisin

https://www.ams.org/news?news_id=4902

Prof Ali Nesin, Eeelavati Prize 2018, and his Nesin Mathematics Village in Turkey

The only way I can pay an honour to an outstanding generous mathematician, Prof Ali Nesin, is to share information about him and his Mathematics Village is to share information collected from the internet:

http://www.nesinkoyleri.org/eng/

https://www.ams.org/notices/201506/rnoti-p652.pdf

https://en.wikipedia.org/wiki/Nesin_Mathematics_Village

 

https://interestingengineering.com/nesin-mathematics-village-learn-enjoy-math

 

https://www.middleeasteye.net/in-depth/features/turkey-s-mathematics-village-changing-education-one-equation-at-a-time-1597523620

 

http://mathematics-in-europe.eu/?p=1568

http://www.hurriyetdailynews.com/a-brief-introduction-to-turkeys-mathematics-village-70193

I can’t help myself noticing similarities between Prof Anand Kumar of India’s Super 30  http://www.super30.org    and Prof Ali Nesin 🙂

Regards,

Nalin Pithwa

 

Maths and the Bomb: Sir Michael Atiyah at 80

Just paying yet another tribute to Sir Michael Atiyah (re-sharing one of the articles I have collected about him):

*************************************************************************************88

Maths and the bomb Sir Michael Atiyah at 80

The Times

April 21 2009

When, five years ago, he shared the £480,000 Abel Prize, the equivalent of a Nobel prize in the world of mathematics, Sir Michael Atiyah might have listened to his wife’s urgings to put his feet up and settle into a comfortable life. But that would not have been his style. “Some mathematicians retire,” he concedes with a smile. “I don’t think I have.”

This week, Sir Michael’s 80th birthday and a life dedicated to science and political activism is celebrated in a series of events. A three-day conference celebrating his contribution to geometry and physics, at the University of Edinburgh Informatics Forum, ends today, his birthday. Tomorrow and on Friday his Sir Michael’s role in promoting disarmament is recognised with readings and lectures dedicated to exposing the folly of nuclear weapons.

Much has been achieved at an age when contemporaries might have settled for a quiet life. In 1995, as president of the Royal Society and aged 67, Sir Michael made a stinging attack on Britain’s nuclear weapons policy.

Subsequently he accepted the presidency of the influential Pugwash disarmament conferences, which unite scientists in opposition to the arms race.

He still believes passionately in the cause, which, he says, is more important to the world than maths, “because if we blow ourselves up, there will be no mathematics anyway”.

Sir Michael discovered his aptitude for mathematics during his boyhood in the Sudan. His Lebanese father was an Oxford graduate and a civil servant, his mother was Scottish and he grew up regarding himself as British, studying at Manchester Grammar School and Cambridge University.

The key professional encounters in his life came in the United States in the 1950s, when he joined the Institute for Advanced Study, at Princeton University, a gathering place for the world’s most brilliant mathematical minds. Here he forged relationships which have endured, and much of his greatest work has come from what he calls the “dialogues of ideas” established there.

His greatest achievement has been the Atiyah-Singer theorem, which secured his fame and prize money, shared with his collaborator, Isadore Singer, of the US. At the time, he said he couldn’t think what to do with his share; the sporty red Lexus parked outside the Informatics building suggests he has since given it more thought.

In simple terms, the theorem provided a kind of analytical bridge which could be shifted between disciplines. “The theorem technique enables you to get to an answer by-passing all the intervening calculations,” he says. The idea “was something where you could calculate numbers of solutions by very indirect methods which applied in a very wide range of situations: geometry, algebra, physics…”

Maths, he says, is something he plays out in his mind as he walks around his flat and his garden, and he jots things down – “the dull stuff” – only when he has to check something.

“Walking helps the physiological process. You have to maintain a very high pitch of concentration when you do mathematics. It’s illumination – shining the mind’s eye on a problem and really seeing through it.

“The old clichés about the beauty of maths are true. It has beauty within it, but not all parts are equally beautiful. Beauty in mathematics is the thing that helps you in the search for truth.”

Some people, he believes, are born with mathematical brains, although they might choose other careers. One former student won the Nobel Prize for Economics, another is the best-paid hedge fund manager in the US. So was Sir Michael never tempted to use his mathematical skill in a wider world? Could he have solved the global financial crisis?

“Economics is a combination of gambling, psychology and who knows what,” he says. “The current crisis? I think people made a bloody mess. You can foretell that the bubble will burst – the question is when. If you gambled on it you might win or lose a lot of money. I just didn’t gamble.”

**************************************************************************************

Regards,

Nalin Pithwa.

 

Sir Michael Atiyah passes away; tribute by The New York Times