## Category Archives: IITJEE Mains

### Derivatives part 14: IITJEE maths tutorial problems for practice

This is part 14 of the series

Question 1:

Let $f(x)= \sqrt{x-1} + \sqrt{x+24-10\sqrt{x-1}}$ for $x<26$ be a real valued function. Then, find $f^{'}(x)$ for $1:

Consider $(\sqrt{x-1}-5)^{2} = x-1+25-10\sqrt{x-1} = x+24 -10\sqrt{x-1}$ so that we have

$\sqrt{x+24-10\sqrt{x-1}}=\sqrt{x-1}-5$

Hence, $f(x) = \sqrt{x-1} + \sqrt{x-1}-5 = 2\sqrt{x-1}-5$ when $1

Hence, $f^{'}{x} = \frac{-2}{2\sqrt{x-1}} = -\frac{1}{\sqrt{x-1}}$

Question 2:

Let $3f(x) - 2 f(\frac{1}{x})=x$, then find $f^{'}(2)$.

Given that $3f(x) - 2 f(\frac{1}{x})=x$….call this I.

Also, from above, we get $3f(\frac{1}{x}) - 2 f(x)= \frac{1}{x}$…call this II.

so we get $6f(x)-4f(\frac{1}{x})=2x$….call this I’

and $9f(\frac{1}{x})-6f(x) = 9/x$…call this II’.

$5f(\frac{1}{x})=2x+ \frac{9}{x}$ and hence, $f^{'}(1/x) = \frac{2x}{5} + \frac{9}{5x}$

Also, again $3f(x)-2f(1/x)=x$….A

$3f(1/x)-2f(x)=1/x$…B

So, we now we get the following two equations:

$9f(x)-6f(1/x)=3x$…..A’

$6f(1/x)-4f(x)=2/x$….B’

so, now we have $5f(x) = 3x + \frac{2}{x}$ so that we get $f(x) = \frac{3}{5}x+\frac{2}{5x}$ and$f(1/x) = \frac{2}{5}x+\frac{9}{5x}$

so $f^{'}(x) = \frac{3}{5} + \frac{2}{5}\frac{-1}{x^{2}} = \frac{3}{5} - \frac{1}{10}=\frac{1}{2}$

Question 3:

If $x= \frac{a(1-t^{2})}{1+t^{2}}$ and $y = \frac{2bt}{1+t^{2}}$, then find $\frac{dy}{dx}$.

Given that $x = \frac{a(1-t^{2})}{1+t^{2}}$ where a is a parameter (constant) and t is a variable.

Let $t=\tan{\theta}$ so that $x = \frac{a(1-\tan^{2}{\theta})}{1+\tan^{2}{\theta}} = a \cos{2\theta}$

so that $y = \frac{2bt}{1+t^{2}}=b \sin{2\theta}$

$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{2b\cos{2\theta}}{-2a\sin{2\theta}}=- \frac{b}{a\tan{2\theta}}$

so that we have

$\frac{dy}{dx} = - \frac{b(1-t^{2})}{a}$

Question 4:

If $y = \arccos{\frac{x-x^{-1}}{x+x^{-1}}}$ then find $\frac{dy}{dx}$

Given that $\arccos{\frac{x^{2}-1}{x^{2}+1}} = \arccos{\frac{1-x^{2}}{1+x^{2}}}$ and put $x=\tan{\theta}$

$\frac{1-\tan^{2}{\theta}}{1+\tan^{2}{\theta}}=\cos{2\theta}$ so that $y = \arccos {\cos{2\theta}}=2\theta$

$\frac{dy}{dx} = 2\frac{d}{dx}(\arctan{x})=\frac{2}{1+x^{2}}$ which is the required answer.

Question 5:

If $\arcsin{(\frac{x^{2}-y^{2}}{x^{2}+y^{2}})}=a$, where a is a parameter, then find $\frac{dy}{dx}$.

Given that $a=\arcsin{(\frac{x^{2}-y^{2}}{x^{2}+y^{2}})}$ so that $\sin{a} = \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$

$(x^{2}+y^{2})\sin{a} = x^{2}-y^{2}$

Differentiating both sides w.r.t. x, we get

$2x\sin{a} + \sin{a} ,2y.\frac{dy}{dx}=2x-2y\frac{dy}{dx}$

$\frac{dy}{dx}(2y\sin{a}+2y)=2x-2x\sin{2a}$

$\frac{dy}{dx} = \frac{2x(1-\sin{a})}{1+\sin{a}}=\frac{x}{y}\times \frac{2y^{2}}{2x^{2}}=\frac{y}{x}$

Question 6:

If $y = cot^{-1}{(\sqrt{\frac{1+x}{1-x}})}$ then find $\frac{dy}{d(\arccos{x})}$.

Given that $y = cot^{-1}(\sqrt{(\frac{1+x}{1-x})})$ so that $y = \arctan{(\sqrt{(\frac{1-x}{1+x})})} = \arctan{(cot {(2\theta)})}$ where $x=\tan^{2}{\theta}$ so that $\frac{d\theta}{dx} = \frac{1}{1+x^{2}}$

and $\sec^{2}{y}.\frac{dy}{dx} = - cosec^{2}{(2\theta)}.2\frac{d\theta}{dx}$

Let $f=\arccos{x}$ so that $\frac{df}{dx} = - \frac{1}{\sqrt{1-x^{2}}}$

Now, note that $\sec^{2}{y} = cosec^{2}{2\theta}$ so we get the following simplification:

$\frac{dy}{dx} = - \frac{2}{1+x^{2}}$

Now, $\frac{dy}{df} = -\frac{\frac{dy}{dx}}{\frac{df}{dx}}= \frac{2\sqrt{1-x^{2}}}{1+x^{2}}$

Cheers,

Nalin Pithwa

### Derivatives: part 13: IITJEE Math tutorial problems for practice

Question 1:

Let $f(x)$ be a differentiable function w.r.t. x at $x=1$ and $\lim_{h \rightarrow 0} \frac{1}{h}f(1+h)=5$, then evaluate $f^{'}(1)$

Solution 1:

By definition, derivative of a function $f(x)$ is $f^{'}(x) = \lim_{t \rightarrow x}\frac{f(t)-f(x)}{t-x}$, where let us substitute $t-x=h$, $t=x+h$, as $t \rightarrow x$, then $h \rightarrow 0$

So that above expression is equal to $\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$f^{'}(1) = \lim_{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$ exists and can be evaluated if we know the value of the function $f(x)$ at $x=1$.

Question 2:

If $x\sqrt{1+y} + y \sqrt{1+x}=0$, then find $\frac{dy}{dx}$.

Given that $x\sqrt{1+y} + y\sqrt{1+x}=0$

Taking derivative of both sides w.r.t. x, we get the following equation:

$\sqrt{1+y} \times 1 + \frac{x}{2\sqrt{1+y}}.\frac{dy}{dx} + \sqrt{1+x}\frac{dy}{dx}+\frac{y}{2\sqrt{1+x}}.1=0$

$\sqrt{1+y}+ \frac{y}{2\sqrt{1+x}}+\frac{dy}{dx} \times (\frac{x}{2\sqrt{1+y}}+\sqrt{1+x})=0$

This further simplifies to :

$\frac{dy}{dx}. (\frac{x+2\sqrt{(1+x)(1+y)}}{2\sqrt{1+y}}) = \frac{2\sqrt{(1+x)(1+y)}+y}{2\sqrt{1+x}}$

$\frac{}{} = 2 \times \sqrt{\frac{1+y}{1+x}} \times \frac{2\sqrt{(1+x)(1+y)+y}}{x+2\sqrt{(1+x)(1+y)}}$

But, we already know that $x\sqrt{1+y}=-y\sqrt{1+x}$ so that $\sqrt{\frac{1+y}{1+x}} = - \frac{y}{x}$

$\frac{dy}{dx} = - \frac{2y}{x} \times \frac{2\sqrt{(1+x)(1+y)}+y}{x+2\sqrt{(1+x)(1+y)}}$

$\frac{dy}{dx}= -2 \times \frac{2y\sqrt{(1+x)(1+y)}+y^{2}}{x^{2}+2x\sqrt{(1+x)(1+y)}}$

$\frac{dy}{dx}=-2. \frac{2x(1+y)+y^{2}}{x^{2}-2y(1+y)}$ is the desired answer.

You can see how ugly it looks. Is there any way to simplify above? Let us give it one more shot. As follows:

Given that $x\sqrt{1+y} + y\sqrt{1+x}=0$ Hence, $x^{2}(1+y)=y^{2}(1+x)$ so that

$x^{2}-y^{2}=y^{2}x-x^{2}y$

$(x+y)(x-y) = y^{2}x-x^{2}y=xy(y-x)$. If $x \neq y$, then

$x+y= -xy$. Taking derivative of both sides w.r.t. x, we get:

$1+\frac{dy}{dx} = y(-1)+(-x)\frac{dy}{dx}$

$(1+x)\frac{dy}{dx} = -1-y$

$\frac{dy}{dx} = - \frac{1+y}{1+x}= - \frac{y^{2}}{x^{2}}$ which is such an elegant answer ðŸ™‚

Question 3:

If $x^{y}.y^{x}=c$, where c is a parameter constant, then find $\frac{dy}{dx}$ at $(e,e)$.

Solution 3:

Let $u=x^{y}$ and $v=y^{x}$.

Taking logarithm of both sides:

$\log {u} = y \log {x}$ and $\log {v} = x \log{y}$.

Consider the LHS equation:

Taking derivative of both sides w.r.t.x, we get:

$\frac{1}{u}\frac{du}{dx} = \frac{y}{x} + \frac{dy}{dx}. \log{x}$

$\frac{1}{u}. \frac{du}{dx} = \frac{y}{x} + \frac{dy}{dx} (\log{x})$

$\frac{du}{dx} = x^{y} \times (\frac{y}{x}+(\log{y}).\frac{dy}{dx})$

$\log {v} = x \log{y}$

$\frac{1}{v}\frac{dv}{dx} = \frac{x}{y}\frac{dy}{dx} + (\log{y})$

$\frac{dv}{dx} = y^{x} \times (\frac{x}{y}\frac{dy}{dx}+ \log{y})$.

Also, $x^{y}\frac{dv}{dx} + y^{x}\frac{du}{dx}=0$

$x^{y}y^{x} \times (\frac{x}{y}\frac{dy}{dx}+\log{y}) + y^{x}.x^{y}. (\frac{y}{x}+(\log{x}).\frac{dy}{dx}) =0$

$x^{y}y^{x} \times (\frac{dy}{dx}(\frac{x}{y}+\log{x})+\log{y}+\frac{y}{x})=0$ Now substitute $(x,y)=(e,e)$ and get the required answer.

$x^{y}y^{x} \times (\frac{dy}{dx}(\frac{x}{y})+\log{x}) = - x^{y}y^{x}(\frac{y}{x}+\log{y})$

$\frac{dy}{dx} (\frac{x}{y}+\log{x})=-(\frac{y}{x}+\log{y})$

Substituting $(x,y) = (e,e)$

Hence, then, $(\frac{dy}{dx})_(e,e) = - \frac{e/e + log e}{e/e + \log {e}}=-1$ is the desired answer.

Question 4:

Find $\frac{d}{dx}(\tan(\arctan{x} + cot^{-1}(x+1))$

Consider $\tan(A+B) = \frac{\tan{A}+\tan{B}}{1-\tan{A}\tan{B}}$

Subsituting $A= \arctan{x}$ and $B=cot^{-1}(x+1)$, we get the following:

$\tan{(A+B)} = \frac{tan(\arctan{x}+tan(cot^{-1}(x+1)))}{1-x. tan(cot^{-1}(x+1))} = \frac{x+\frac{1}{(x+1)}}{1-\frac{x}{x+1}}$

which in turn equals $\frac{x+\frac{1}{x+1}}{1-\frac{x}{x+1}}=\frac{x^{2}+x+1}{1}$ noting that $\arctan{(\frac{1}{x+1})}=cot^{-1}(x+1)$

Hence, the answer is $\frac{d}{dx}(x^{2}+x+1)=2x+1$

Question 5:

If $y = \arctan{\sqrt{\frac{1+\sin{x}}{1-\sin{x}}}}$, find $\frac{dy}{dx}$

Solution 5:

Given that $\tan{y} = \sqrt{\frac{1+\sin{x}}{1-\sin{x}}}$

$\tan^{2}{y} = \frac{1+\sin{x}}{1-\sin{x}}$. Taking derivative of both sides w.r.t. x,

$2(\tan{y})/ \sec^{2}{y}\frac{dy}{dx} = \frac{(1-\sin{x})(\cos{x})}{(1-\sin{x})^{2}}$

$2\tan{y}\sec^{2}{y}\frac{dy}{dx} = \frac{\cos{x}-\sin{x}\cos{x}+\cos{x}+\sin{x}\cos{x}}{(1-\sin{x})^{2}}$ which in turn equals

$\frac{2\cos{x}}{(1-\sin{x})^{2}}$

But, $\tan^{2}{y} = \frac{1+\sin{x}}{1-\sin{x}}$

so that $\sec^{2}{y}=1+\tan^{2}{y}=1+\frac{1+\sin{x}}{1-\sin{x}} = \frac{2}{1-\sin{x}}$

Hence, $2. \sqrt{\frac{1+\sin{x}}{1-\sin{x}}} \times \frac{2}{1-\sin{x}} \times \frac{dy}{dx} = \frac{2\cos{x}}{(1-\sin{x})^{2}}$

Hence, $\frac{dy}{dx} = \frac{1}{2} \times \frac{\cos{x}}{\sqrt{(1+\sin{x})(1-\sin{x})}} = \frac{\cos{x}}{2\sqrt{1-\sin^{2}{x}}} = \frac{1}{2}$

Question 6:

Find $\frac{d}{dx}cot^{-1}(\frac{1+\sqrt{1+x^{2}}}{x})$

Solution 6:

Let $y = cot^{-1} (\frac{1+\sqrt{1+x^{2}}}{x})$

Put $x = \sin{\theta}$ so that $\sqrt{1-x^{2}}=\sqrt{1-\sin^{2}{\theta}}=\cos{\theta}$

$\frac{1+\cos{\theta}}{\sin{\theta}} = \frac{2\cos^{2}(\theta/2)}{2\sin{\theta/2}\cos{\theta/2}} = cot (\theta/2)$

$cot^{-1}(cot{(\theta/2)}) = \theta/2$

$y=\theta/2$

$\frac{dy}{dx} = \frac{1}{2}\frac{d}{dx}( \arcsin {x} )=\frac{1}{2\sqrt{1-x^{2}}}$ where $|x|<1$

Question 7:

If $y = \arcsin{(\frac{2x}{1+x^{2}})}+sec^{-1}(\frac{1+x^{2}}{1-x^{2}})$. Find $\frac{dy}{dx}$.

Solution 7:

Let $x = \tan{\theta}$ so that $\frac{2x}{1+x^{2}} = \frac{2\tan{\theta}}{1+\tan^{2}{\theta}} = \sin{2\theta}$

so that $\arcsin{(\frac{2x}{1+x^{2}})} = \arcsin{\sin{2\theta}}=2\theta$

We now have $\frac{1-x^{2}}{1+x^{2}} = \frac{1-\tan^{2}{\theta}}{1+\tan^{2}{\theta}} = \cos{2\theta}$

so that $sec^{-1}{(\frac{1+x^{2}}{1-x^{2}})} = sec^{-1}(sec {(2\theta)}) =2 \theta$

so the desired answer is $4\frac{d\theta}{dx}=\frac{4}{1+x^{2}}$

Question 8:

If $y= \arcsin{(\frac{\sqrt{1+x}+\sqrt{1-x}}{2})}$ then find $\frac{dy}{dx}$

Solution 8:

Given that $\sin{y} = \frac{\sqrt{1+x}+\sqrt{1-x}}{2}$

$2\cos{y}\frac{dy}{dx} = \frac{1}{2\sqrt{1+x}} \times 1 + \frac{1}{2\sqrt{1-x}} \times (-1)$

$2\cos{y} \frac{dy}{dx} = \frac{\sqrt{1-x}-\sqrt{1+x}}{2\sqrt{1-x^{2}}}$

$2\cos{y} \frac{dy}{dx} = \frac{1-x-(1+x)}{(2\sqrt{1-x^{2}})(\sqrt{1-x}+\sqrt{1+x})} = - \frac{2x}{(2\sqrt{1-x^{2}})(\sqrt{1-x}+\sqrt{1+x})}$

$2\cos{y} \frac{dy}{dx} = - \frac{x}{(\sqrt{1-x^{2}})(2\sin{y})}$

$\frac{dy}{dx} = - \frac{x}{2\sqrt{1-x^{2}} (\sin{2y})}$ but $\sin{2y} = \frac{\sqrt{1+x}+\sqrt{1-x}}{2}$ and $\cos{y} = \frac{\sqrt{1+x}-\sqrt{1-x}}{2}$

so now we have $\sin{2y} = \frac{2}{4} (1+x-(1-x)) = x$

Hence, we get $\frac{dy}{dx} = - \frac{x}{2\sqrt{1-x^{2}}(x)}=-\frac{1}{2\sqrt{1-x^{2}}}$.

Question 9:

If $g(x) = x^{2}+2x+3f(x)$ and $f(0)=5$ and $\lim_{x \rightarrow 0} \frac{f(x)-5}{x}=4$, then evaluate $g^{'}(0)$.

Solution 9:

We have $g^{'}{(x)} = 2x+2+3f^{'}(x)$ and hence, $g^{'}{(0)}=2+3f^{'}{(0)}$

By definition of derivative, we have $f^{'}{(x)}= \lim_{t \rightarrow x} \frac{f(t)-f(x)}{t-x}$ where let us say $t-x=h$ so that $t \rightarrow x$, and $h \rightarrow 0$

$f^{'}(x) = \lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$\lim_{h \rightarrow 0} \frac{f(h)-5}{h}=4$ and $f(0)=5$ and hence, $f^{'}(0)=4$.

Hence, $g^{'}(0)=2+3 \times 4=14$

Question 10:

If $\tan{y} = \frac{2t}{1-t^{2}}$, and $\sin{x}=\frac{2t}{1+t^{2}}$, then find $\frac{d^{2}y}{dx^{2}}$.

Let $t = \tan{\theta}$ and hence, $\frac{2t}{1-t^{2}} = \frac{2\tan{\theta}}{1-\tan^{2}{\theta}} = \tan{2\theta}$

Hence, $\tan{y} = \tan{2\theta}$

so that $\sec^{2}{y} \frac{dy}{dx} = \sec^{2}{(2\theta)}.2.\frac{d\theta}{dx}$

Let $t=\tan{\theta}$ so that $\theta = \arctan{t}$ and $\frac{d\theta}{dx}=\frac{1}{1+t^{2}} \times \frac{dt}{dx}$

Hence, we get $(\sec^{2}{y})\frac{dy}{dx} = \sec^{2}(2\theta) \times \frac{2}{(1+t^{2})}.\frac{dt}{dx}$ so that

$\sec^{2}{(2\theta)}\frac{dy}{dx} = \sec^{2}{(2\theta)} \times \frac{2}{1+t^{2}} \times \frac{dt}{dx}$

Hence, $\frac{dy}{dx} = \frac{2}{(1+t^{2})}\frac{dt}{dx}$

Hence, $\sin{x}=\frac{2t}{1+t^{2}} = \frac{2\tan{\theta}}{1+\tan^{2}{(\theta)}}=2 \frac{\sin{\theta}}{\cos{\theta}} \frac{\cos^{2}{\theta}}{1}$

Hence, $\sin{x} = \sin{2\theta}$ and hence $x=2\theta$ and so $t=\tan{\theta}$ hence, $\theta=\arctan{t}$

$x =\arctan{t}$ so that $t=\tan{x}$

$\frac{dt}{dx} = \frac{1}{1+x^{2}}$….call this A.

$\frac{dy}{dx} = \frac{2}{1+t^{2}} \frac{dt}{dx}$…call this B.

$\frac{dy}{dx} = \frac{2}{(1+t^{2})(1+x^{2})}$

$\frac{d^{2}y}{dx^{2}} = \frac{d}{dx}(\frac{2}{(1+t^{2})(1+x^{2})}) = \frac{2}{(1+t^{2})} \frac{d}{dx}(\frac{1}{1+x^{2}}) + \frac{2}{(1+x^{2})} \frac{d}{dx}(\frac{1}{(1+t^{2})})$

$\frac{d^{2}y}{dx^{2}} = \frac{2}{(1+t^{2})}. \frac{-2x}{(1+x^{2})^{2}}+\frac{2}{(1+x^{2})}.\frac{-2t}{(1+t^{2})^{2}}.\frac{dt}{dx}$

$=\frac{-4x}{(1+t^{2})(1+x^{2})^{2}} - \frac{4t}{(1+x^{2})^{2}(1+t^{2})^{2}}$

$\frac{d^{2}y}{dx^{2}} = \frac{-4x(1+t^{2})-4t}{(1+x^{2})^{2}(1+t^{2})^{2}} = \frac{-4(t+x(1+t^{2}))}{(1+x^{2})^{2}(1+t^{2})^{2}}$ which in turn equals

$\frac{-4(\tan{x}+x (1+\tan^{2}{x}))}{(1+x^{2})^{2}(1+\tan^{2}{x})^{2}}$ so where did we go wrong….quite clearly, practice alone can help us develop foresight…below is a cute proof:

$\frac{dy}{dx}= \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{d}{dt}(\arctan{(\frac{2t}{1-t^{2}})})}{\frac{d}{dt}\arcsin(\frac{2t}{1+t^{2}})}$ and put $t=\tan{\theta}$

so that $\frac{dy}{dx} = \frac{2\frac{d\theta}{dt}}{2\frac{d\theta}{dt}}=1$ so we have bingo ðŸ™‚ an elegant answer

$\frac{d^{2}y}{dx^{2}}=1$

Cheers,

Nalin Pithwa.

### Derivatives: part 12:IITJEE maths tutorial problems for practice

1, $x = a(t+\frac{1}{t})$, $y=a(t-\frac{1}{t})$, then find $\frac{dy}{dx}$.

Option (A) $\frac{t^{2}-1}{t^{2}+1}$

Option (B) $\frac{t^{2}+1}{t^{2}-1}$

Option (C) $\frac{t^{2}+1}{1-t^{2}}$

Option (D) $\frac{1}{t}$

Solution 1: Given that $x=at+\frac{a}{t}$ so that $\frac{dx}{dt} = a +\frac{a(-1)}{t^{2}} = a(1-\frac{1}{t^{2}})$

and given that $y = at - \frac{a}{t}$ so that $\frac{dy}{dt} = x + \frac{a}{t^{2}} = a(1+ \frac{1}{t^{2}})$

and so we get $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{a(1 - \frac{1}{t^{2}})}{a(1+\frac{1}{t^{2}})} = \frac{t^{2}-1}{t^{2}+1}$ so that correct choice is option A.

2. If $x = a \sin{3t} + b \cos{3t}$ and $y= b \cos {t} + a \sin{t}$ then find $\frac{dy}{dx}$ when $t = \frac{\pi}{4}$

Option (A) 0

Option (B) $\frac{b-a}{3(a+b)}$

Option (C) $\frac{a-b}{3(a+b)}$

Option (D) $\frac{b-a}{b+a}$

Solution 2:

$\frac{dy}{dt} = -b \sin{t} + a\cos{t}$

$\frac{dx}{dt} = 3a \cos{3t} + -3b \sin{3t}$

$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = - \frac{-b\sin{t}+a \cos{t}}{3a \cos{3t}-3b\sin{3t}}$ which is equal to the following at $t = \frac{\pi}{4}$

$\frac{dy}{dx} = \frac{- \frac{b}{\sqrt{2}} + \frac{a}{\sqrt{2}}}{-\frac{3a}{\sqrt{2}} - \frac{3b}{\sqrt{2}}}=-\frac{1}{3} \times \frac{b-a}{a+b}$ so that the correct choice is C.

3. If $y = \frac{x \arcsin{x}}{\sqrt{1-x^{2}}} + \log{(\sqrt{1-x^{2}})}$, then find $\frac{dy}{dx}$

Option A: $\frac{\arcsin{x}}{(1-x^{2})^{\frac{3}{2}}}$

Option B: $\frac{\arcsin{x}}{\sqrt{1-x^{2}}}$

Option C:$\frac{\arcsin{x}}{1-x^{2}}$

Option D: $(1-x^{2})^{\frac{3}{2}}\arcsin{x}$

Solution 3:

Let $y = f(x) + g(x)$ where we put $f(x) = \frac{x \arcsin{x}}{\sqrt{1-x^{2}}}$ so now let $x=\sin{\theta}$

So, we get $\frac{dx}{d\theta} = \cos{\theta}$ and $1-x^{2}= \cos^{2}{\theta}$ and $\sqrt{1-x^{2}} = \cos{\theta}$

So we get $f(\theta) = \frac{\theta \times \sin{\theta}}{\cos{\theta}} = \theta \times \tan{\theta}$

So now $\frac{df}{d\theta}= \tan{\theta}+ \theta \times \sin^{2}{\theta}$

And, $g(x) = \log{\sqrt{1-x^{2}}}$

$\frac{dg}{dx} = \frac{1}{\sqrt{1-x^{2}}} \times \frac{d}{dx} (\sqrt{1-x^{2}}) = \frac{1}{2(1-x^{2})} \times (-2x)= \frac{-x}{1-x^{2}}$

Hence, we get the following:

$\frac{dy}{dx} = \frac{x}{\sqrt{1-x^{2}}} + \frac{\arcsin{x}}{\frac{1}{1-x^{2}}} + \frac{-x}{1-x^{2}}$

Question 4: Find the following: $\frac{d}{dx}(sec^{-1}{(\frac{1}{\sqrt{1-x^{2}}})} + cot^{-1}(\frac{\sqrt{1-x^{2}}}{x}))$

Option a: $\frac{2}{\sqrt{1-x^{2}}}$

Option b: $\frac{1}{\sqrt{1-x^{2}}}$

Option c: $\frac{\sqrt{1-x^{2}}}{x}$

Option d: $\sqrt{1-x^{2}}$

Solution 4:

Let $f(x)=y_{1}=sec^{-1}(\frac{1}{\sqrt{1-x^{2}}})$

Let $x=\sin{\theta}$, $1-x^{2}=\cos^{2}(\theta)$, $\sqrt{1-x^{2}}=\cos{\theta}$, and $\frac{1}{\sqrt{1-x^{2}}} = \sec{\theta}$

so $y_{1}=\theta=\arcsin{x}$

$\frac{dy_{1}}{dx} = \frac{1}{\sqrt{1-x^{2}}}$

Let $y_{2}=cot^{-1}{\frac{\sqrt{1-x^{2}}}{x}}$

Let $x=\sin{\theta}$, $\sqrt{1-x^{2}}=\cos{\theta}$ and $\frac{\sqrt{1-x^{2}}}{x}=\cot{\theta}$

Let $y_{2}= \cot^{-1}{\cot{\theta}}=\theta$

so that $\frac{dy_{2}}{dx} = \frac{d}{dx}(\arcsin{x})=\frac{1}{1-x^{2}}$

so that $\frac{dy}{dx}=\frac{2}{\sqrt{1-x^{2}}}$ so the option is a.

Question 5:

If $y=(x+\sqrt{1+x^{2}})^{n}$ then find $(x^{2}+1)(\frac{dy}{dx})^{2}$.

Solution 5:

$y=(x+\sqrt{1+x^{2}})^{n}$

$\frac{dy}{dx} = x(x+\sqrt{1+x^{2}})^{n-1}\frac{d}{dx}(x+\sqrt{1+x^{2}}) = n(x+\sqrt{1+x^{2}})^{n-1}(1+\frac{2x}{2\sqrt{1+x^{2}}})$

$(\frac{dy}{dx})^{2}.(x^{2}+1) = (x^{2}+1).n^{2}.(x+\sqrt{1+x^{2}})^{2n-2} \times (1+\frac{x}{\sqrt{1+x^{2}}})^{2}$

$=(x^{2}+1).n^{2}. (x+\sqrt{1+x^{2}})^{2n-2} \times (\frac{x+\sqrt{1+x^{2}}}{\sqrt{1+x^{2}}})^{2}$

$=(x^{2}+1).n^{2}.(x+\sqrt{1+x^{2}})^{2n}.\frac{1}{(1+x^{2})}=n^{2}y^{2}$

Question 6:

If $f(x)= \sqrt{\frac{(x+1)(x+2)}{(x+3)(x+6)}}$, then $f^{'}(0)$ is equal to

(a) 1/2 (b) 1/3 (c) 1/6 (d) 0

Solution 6:

Given that $y = \sqrt{\frac{(x+1)(x+2)}{(x+3)(x+6)}}$

Hence, we have $(x+3)(x+6) y^{2}=(x+1)(x+2)$

$(x+3)\frac{d}{dx}(y^{2}(x+6))+y^{2}(x+6) \times 1 = (x+1) \times 1 + (x+2) \times 1=2x+3$

$(x+3)(x+6)2y\frac{dy}{dx} + (x+3)y^{2} \times 1 =2x+3$

$(x+3)(x+6)2y\frac{dy}{dx} + (x+3) \times \frac{(x+1)(x+2)}{(x+3)(x+6)} = 2x+3$

$(x+3)(x+6)^{2}.2. \sqrt{\frac{(x+1)(x+2)}{(x+3)(x+6)}}+(x+1)(x+2) = (2x+3)(x+6)$

$2\sqrt{(x+1)(x+2)(x+3)(x+6)} \times (x+6)\frac{dy}{dx} + (x+1)(x+2) = (2x+3)(x+6)$

So, at x=0, on substitution we get $f^{'}(0)$.

Question 7:

If $y = \frac{1-t^{2}}{1+t^{2}}$, $x = \frac{2t}{1+t^{2}}$, then find $\frac{dy}{dx}$.

Solution 7:

Given $y= \frac{1-t^{2}}{1+t^{2}}$, let $t= \tan{\theta}$ so that $\frac{dt}{d\theta}= \sec^{2}(\theta)$

so that $y = \frac{1-t^{2}}{1+t^{2}} = \frac{1-\tan^{2}{\theta}}{1+\tan^{2}{\theta}} = \frac{\cos^{2}{\theta}-\sin^{2}{\theta}}{1} = 2 \cos^{2}{\theta}-1= \cos{2\theta}$

Now, $x = \frac{2t}{1+t^{2}}=\frac{2\tan{\theta}}{1+\tan^{2}{\theta}}$ so that $x = \sin{2\theta}$

so now $\frac{dx}{d\theta}=2 \cos{2\theta}$

$y = \cos{2\theta}$

$\frac{dy}{d\theta} = -2 \sin{2\theta}$

$\frac{dy}{dx} = - \frac{2\sin{(2\theta)}}{2(\cos{2\theta})}= - \tan{(2\theta)} = - \frac{2t}{1-t^{2}}= - \frac{x}{y}$.

Question 8:

Find $\frac{d}{dx}(\arctan{x} + \arcsin{(\frac{x}{\sqrt{1+x^{2}}})})$

Solution 8:

Let it be given that $y = \arctan{x} + \arcsin{(\frac{x}{\sqrt{1+x^{2}}})}$

Now, let us simplify this as $y=y_{1}+y_{2}$ where $y_{1} = \arctan{x}$ and $y_{2} = \arcsin{(\frac{x}{\sqrt{1+x^{2}}})}$

Now, first consider $y_{1} = \arctan{x}$. Taking derivative of both sides w.r.t. x, we get

$\frac{dy_{1}}{dx} = \frac{d}{dx}(\arctan{x}) = \frac{1}{1+x^{2}}$….A

Now, next consider $y_{2} = \arcsin{(\frac{x}{\sqrt{1+x^{2}}})}$. Takind derivative of both sides w.r.t. x, we get

$\frac{dy_{2}}{dx} = \frac{d}{dx}(\arcsin{(\frac{x}{\sqrt{1+x^{2}}})}) = \frac{1}{1- \frac{x^{2}}{1+x^{2}}} \frac{d}{dx}(\frac{x}{\sqrt{1+x^{2}}}) = \frac{1}{1+x^{2}}(\frac{1}{\sqrt{1+x^{2}}+\frac{x}{2}(1+x^{2})^{-3/2}})$….B

So that we get $\frac{dy}{dx} = \frac{dy_{1}}{dx} + \frac{dy_{2}}{dx}$using A and B.

Question 9:

If $x^{y} = y^{x}$, then find $\frac{dy}{dx}$

Solution 9:

Given that $x^{y} = y^{x}$

$y \log{x}= x \log{y}$. Taking derivative of both sides w.r.t. x, we get

$(\log{x}).\frac{dy}{dx} + \frac{y}{x} = \frac{x}{y}. \frac{dy}{dx} + (\log{y}) \times 1$

$(\log{x}- \frac{x}{y}).\frac{dy}{dx} = (\log{y}) - \frac{y}{x}$

$\frac{dy}{dx} = \frac{\frac{x(\log{y}-y)}{x}}{\frac{y\log{x}-x}{y}}= \frac{y}{x} \times \frac{x(\log{y})-y}{y(\log{x})-x}$ which is the required answer.

Question 10:

If $(x+y)^{m+n} = x^{m}y^{n}$, then find $\frac{dy}{dx}$.

Solution 10:

Given that $(x+y)^{m+n} = x^{m}y^{n}$

Taking logarithm of both sides w.r.t. any arbitrary valid base,

$(m+n) \times \log{(x+y)} = \log{(x^{m}y^{n})} = \log(x^{m}) + \log{y^{n}}$ so that $(m+n).\log{(x+y)}=m \log{x} + n \log{y}$

Taking derivative of both sides w.r.t. x, we get the following:

$\frac{m+n}{x+y}. \times (1+\frac{dy}{dx}) = \frac{m}{x} + \frac{n}{y}.\times \frac{dy}{dx}$

$\frac{m+n}{x+y} \times \frac{dy}{dx} - \frac{x}{y}. \frac{dy}{dx} = \frac{m}{x} - \frac{m+n}{x+y}$

$\frac{(m+n)y-n(x+y)}{y(x+y)}. \frac{}{} = \frac{mx+my-mx-nx}{x(x+y)}$

$\frac{my+ny-nx-ny}{} = \frac{my-nx}{x(x+y)}$

$\frac{my-nx}{y(n+y)}. \frac{dy}{dx} = \frac{my-nx}{x(x+y)}$, so that finally we get the desired answer:

$\frac{dy}{dx} = \frac{y}{x}$

More later,

Cheers,

Nalin Pithwa

### Derivatives: part 11: IITJEE maths tutorial problems for practice

Problem 1: Find $\frac{d}{dx}\arctan{\frac{4x}{4-x^{2}}}$.

Choose (a) $\frac{1}{4-x^{2}}$ (b) $\frac{1}{4+x^{2}}$ (c) $\frac{4}{4+x^{2}}$ (d) $\frac{4}{4-x^{2}}$

Solution 1:

Let $y = \arctan{\frac{4x}{4-x^{2}}}$. Hence, $\tan{y} = \frac{4x}{4-x^{2}}$. Differentiating both sides w.r.t. x, we get the following:

$\sec^{2}{y} \times \frac{dy}{dx}= \frac{d}{dx} (\frac{4x}{4-x^{2}})$

$\sec^{2}{y} \times \frac{dy}{dx} = \frac{(4-x^{2}) \times 4 - 4x \times (-2x)}{(4-x^{2})^{2}} = \frac{16+4x^{2}}{(4-x^{2})}$

But, $\sec^{2}{y}=\tan^{2}{y}+1=\frac{(x^{2}+4)^{2}}{(4-x^{2})^{2}}$

Hence, the answer is $\frac{dy}{dx}= \frac{4}{4+x^{2}}$. Option c.

Problem 2: Find $\frac{dy}{dx}$ if $\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}}=1$

Choose (a) $\frac{-(2x+y)}{x+y}$ (b) $\frac{-(2x+y)}{x+2y}$ (c) $\frac{x+2y}{x+y}$ (d) $-\frac{2x+y}{x+2y}$

Solution 2:

The given equation is $x+y = \sqrt{xy}$. Differentiating both sides wrt x,

$1+ \frac{dy}{dx} = \sqrt{y} \times \frac{d}{dx} (\sqrt{x})+ \sqrt{x}\frac{d}{dx}(y^{\frac{1}{2}})$

$1+\frac{dy}{dx} = \frac{\sqrt{y}}{2\sqrt{x}} + \frac{\sqrt{x}}{2\sqrt{y}} \times \frac{dy}{dx}$

$(1- \frac{1}{2}\sqrt{\frac{x}{y}}) \times \frac{dy}{dx} =\frac{\sqrt{y}}{2\sqrt{x}} -1$

$\frac{dy}{dx} = \frac{\sqrt{y}-2\sqrt{x}}{2\sqrt{y}-\sqrt{x}} \times \frac{2\sqrt{y}}{2\sqrt{x}}$

$\frac{}{} = \frac{2y - 4\sqrt{xy}}{4\sqrt{xy}-2x} = \frac{2y-4(x+y)}{4(x+y)-2x} = - \frac{2x+y}{x+2y}$ is the answer. Option D.

Problem 3: If $y=\arctan{\frac{\log{(\frac{e}{x^{2}})}}{\log{(ex^{2})}}}$ then $\frac{dy}{dx}$ is

choose (a) $e$ (b) $\frac{2}{x(1+4(\log{x})^{2})}$(c) $\frac{-2}{x(1+4(\log{x})^{2})}$ (d) $\frac{2}{1+x^{2}}$

Solution 3:

Given that $y = \arctan{(\frac{\log(\frac{e}{x^{2}})}{\log(ex^{2})})}$ so that we have

$\tan{y} = \frac{\log{\frac{e}{x^{2}}}}{\log{ex^{2}}}$ so now differentiating both sides w.r.t. x,

$\sec^{2}{y}\frac{dy}{dx} = \frac{\frac{\log{(ex^{2})}}{\frac{e}{x^{2}}} \frac{d}{dx}(\frac{e}{x^{2}}) - \log{(\frac{e}{x^{2}})} \times \frac{1}{ex^{2}} \times \frac{d}{dx}(ex^{2})}{(\log{(ex^{2})})}$

$\sec^{2}{y}\frac{dy}{dx} = \frac{-\frac{2}{x}(\log{(ex^{2})})- \frac{2}{x}\log{(\frac{e}{x^{2}})}}{(\log{(ex^{2})})^{2}}$

$\sec^{y}(\frac{dy}{dx}) = \frac{-\frac{2}{x}(\log{(ex^{2}) \times (\frac{e}{x^{2}})})}{(\log{ex^{2}})^{2}}$

$\sec^{y}\frac{dy}{dx} = \frac{-\frac{4}{x}}{(\log{(ex^{2})^{2}})} = \frac{-4}{x(\log{(ex^{2})})^{2}}$

Now, we also know that$\sec^{2}{y} = 1 + \tan^{2}{y} = \frac{(\log{(\frac{e}{x^{2}})})^{2}}{(\log{(ex^{2})})^{2}} + 1 = \frac{(\log(\frac{e}{x^{2}}))^{2}+(\log{(ex^{2})})^{2}}{(\log{(ex^{2})})^{2}}$

But, note that by laws of logarithms, on simplification, we get

$\log{(\frac{e}{x^{2}})} = 1 - 2\log{x}$ and $\log{(ex^{2})} = 1 + 2 \log{x}$ so that on squaring, we get

$(\log{(e/x^{2})})^{2} = 1-4\log{x} + 4 (\log{x})^{2}$

$(\log{(ex^{2})})^{2}=1+4\log{x} + 4 (\log{x})^{2}$ so that now we get

$(\log{(\frac{e}{x^{2}})})^{2} + (\log{(ex^{2})})^{2} = 2 + 8 (\log{x})^{2}$, which all put together simplifies to

$\frac{dy}{dx} = \frac{1}{\sec^{2}{y}} \times \frac{-(\frac{4}{x})}{(\log{(ex^{2})})^{2}}$

$\frac{dy}{dx} = - \frac{(\frac{2}{x})}{1+4(\log{x})^{2}}$ so that the answer is option C.

Problem 4: Find $\frac{d}{dx}(\arcsin{(3x-4x^{3})}+\arccos{(2x(\sqrt{(1-x^{2})}))})$

Choose option (a) $\frac{1}{\sqrt{1-x^{2}}}$ (b) $\frac{-1}{\sqrt{1-x^{2}}}$ (c) $\frac{5}{\sqrt{1-x^{2}}}$ (d) $\frac{-2}{\sqrt{1-x^{2}}}$

Solution 4:

Let us consider the first differential. Let us substitute $x = \sin{\theta}$. Hence,

$3x-4x^{3}=3\sin{\theta} - 4\sin^{3}{\theta}= \sin{3\theta}$ and so we $\arcsin{3x-4x^{3}} = \arcsin{\sin{3\theta}} = 3 \theta$, and so also, we get $\arccos{2x\sqrt{1-x^{2}}}=\arccos{2\sin{\theta}\cos{\theta}} = \arccos{\cos{2\theta}}=2\theta$ so we get

required derivative

$\frac{dy}{dx} = \frac{d}{dx}(3\theta) + \frac{d}{dx}(2\theta) = \frac{d}{dx}(5\theta) = 5 \frac{d\theta}{dx} = 5 \frac{d}{dx}(\arcsin{x})= 5 \frac{1}{\sqrt{1-x^{2}}}$. Answer is option C.

Problem 5: Find $\frac{d}{dx}(x-a)(x-b)(x-c)\ldots (x-z)$

Choose option (a) zero (b) 26 (c) 26! (d) does not exist

Solution 5: the expression also includes a term $0 = (x-x)$ so that the final answer is zero only.

Problem 6: Find $\frac{d}{dx}(x^{x})^{x}$.

Solution 6: Let $y= (x^{x})^{x}$

so $\log{y} = \log{(x^{x})^{x}}$

so $\log{y} = x^{2} \times \log{x}$ so that differentiating both sides w.r.t. x, we get

we get $\frac{1}{y} \times \frac{dy}{dx} = \frac{x^{2}}{x} + \log{x} \times 2x$

we get $\frac{1}{y} \times \frac{dy}{dx} = x + 2x \log{x} = x(1+2\log{x})$

we get $\frac{dy}{dx} = yx (1+2 \log{x}) = (x^{x})^{x} \times x \times (1+2\log{x})$

so the answer is option B.

Choose option (a): $x.x^{x}(1+2\log{x})$ (b) $x^{x^{2}+1} \times (1+2\log{x})$ (c) ${x^{{x}^{2}}}(1+\log{x})$ (d) none of these

Problem 7:

Find $\frac{d}{dx}(e^{x^{x}})$

Choose option (a) $e^{x^{x}}.x^{x}.(1+\log{x})$ (b) $e^{x^{x}}. x^{x}.\log{(\frac{x}{e})}$ (c) $e^{x^{x}}.x^{x}$ (d) $e^{x^{x}}. (\log{(e^{x})})$

Solution 7: Let $y = (e^{(x^{x})})$ so that taking logarithm of both sides

$\log{y} = \log{(e^{(x^{x})})}$ so that $\log{y} = x^{x} \log{e} = x^{x}$

$\log {(\log{y})}= x \times (\log{x})$. Differentiating both sides w.r.t.x we get:

$\frac{1}{\log{y}} \times \frac{d}{dx} \times (\log{y})= \frac{x}{x} + \log{x}$ so that we get now

$latex\frac{1}{y(\log{y})} \times \frac{dy}{dx} = 1 + \log{x}$

$\frac{dy}{dx} = e^{x^{x}} \times x^{x} \times (1+\log{x})$ so we get option a as the answer.

Problem 8:

Find $\frac{d}{dx}(x^{x^{x}})$

Choose option (a): $x^{x^{x}} \times (1+\log{x})$ (b) $x^{x^{x}} \times (x^{x}\log{x})(1+\log{x}+\frac{1}{x})$ (c) $x^{x^{x}} \times (x^{x}\log{x}) \times (1+\log{x}+\frac{1}{x\log{x}})$ (d) none of these.

Solution 8:

let $y=x^{x^{x}}$ taking logarithm of both sides we get

$\log{y} = x^{x} \times \log{x}$ and now differentiating both sides w.r.t.x, we get

$\frac{1}{y} \times \frac{dy}{dx} = \frac{x^{x}}{x} + (\log{x}) \times \frac{d}{dx} (x^{x})$ and now let $t=x^{x}$ and again take logarithm of both sides so that we get (this is quite a classic example…worth memorizing and applying wherever it arises):

$\log{t}= x\log{x}$

$\frac{1}{t} \frac{dt}{dx} = \frac{x}{x} + \log{x}=1+\log{x}$

$\frac{dt}{dx} = x^{x}(1+\log{x})$

$\frac{dy}{dx} \times \frac{1}{y} = x^{x-1} + (\log{x}).x^{x}.(1+\log{x})$

$\frac{dy}{dx} = x^{x}(x^{x-1}+x^{x} \times \log{x} \times (1+\log{x}))$

$\frac{dy}{dx} = x^{x^{x}} (x^{x} \times (\log{x})) \times (1+ \log{x}+ \frac{1}{x \log{x}})$

Problem 9:

Find $\frac{d}{dx}(x+a)(x^{2}+a^{2})(x^{4}+a^{4})(x^{8}+a^{8})$.

Choose option (a): $\frac{15x^{16}-16x^{15}a+a^{16}}{(x-a)^{2}}$ (b) $\frac{x^{16}-a^{16}}{x-a}$ (c) $\frac{x^{16}-x^{15}a+a^{16}}{(x-a)^{2}}$ (d) none of these

Solution 9:

Given that $y = (x+a)(x^{2}+a^{2})(x^{4}+a^{4})(x^{8}+a^{8})$

Remark: Simply multpilying out thinking the symmetry will simplify itself is going to lead to a mess…because there will be no cancellation of terms …:-) The way out is a simple algebra observation…this is why we should never ever forget the fundamentals of our foundation math:-)

note that the above can be re written as follows:

$y = \frac{(x^{2}-a^{2})}{(x-a)} \times \frac{(x^{4}-a^{4})}{(x^{2}-a^{2})} \times \frac{x^{8}-a^{8}}{(x^{4}-a^{4})} \times \frac{(x^{16}-a^{16})}{(x^{8}+a^{8})}$

Now, we are happy like little children because many terms cancel out ðŸ™‚ hahaha…lol ðŸ™‚

$y = \frac{(x^{16}-a^{16})}{(x-a)}$ and now differentiating both sides w.r.t.x we get

$\frac{dy}{dx} = \frac{(x-a)(16x^{15})- (x^{16}-a^{16})(1)}{(x-a)^{2}}$

$\frac{dy}{dx} = \frac{15x^{16}-16x^{15}a+a^{16}}{(x-a)^{2}}$

Problem 10:

If $x= \theta {\cos{\theta}}+\sin{\theta}$ and $y = \cos{\theta}-\theta \times \sin{\theta}$ then find the value of $\frac{dy}{dx}$ at$\theta = \frac{\pi}{2}$

Choose option (a): $-\frac{\pi}{2}$ (b) $\frac{2}{\pi}$ (c) $\frac{\pi}{4}$ (d) $\frac{4}{\pi}$

Solution 10:

$\frac{dx}{d\theta} = \cos{\theta} - \theta \times \sin{\theta} + \cos{\theta}$

$\frac{dy}{d\theta} = -\sin{\theta} - (\sin{\theta} + \theta \times \cos{\theta})$

$\frac{dy}{d\theta} = \theta \times \cos{\theta} - 2\sin{\theta}$

$\frac{dx}{d\theta} = 2 \cos{\theta} - \theta \times \sin{\theta}$

$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dy}{d\theta}} = \frac{\theta \times \cos{\theta}-2\sin{\theta}}{2\cos{\theta}-\theta \times \sin{\theta}} = \frac{-2}{-\pi/2}=\frac{4}{\pi}$

Regards,

Nalin Pithwa.

### A problem of log, GP and HP…

Question: If $a^{x}=b^{y}=c^{z}$ and $b^{2}=ac$, pyrove that: $y = \frac{2xz}{x+z}$

Solution: This is same as proving: y is Harmonic Mean (HM) of x and z;

That is, to prove that $y=\frac{2xz}{x+z}$ is the same as the proof for : $\frac{1}{y} - \frac{1}{x} = \frac{1}{z} - \frac{1}{y}$

Now, it is given that $a^{x} = b^{y} = c^{z}$ —– I

and $b^{2}=ac$ —– II
Let $a^{x} = b^{y}=c^{z}=N$ say. By definition of logarithm,

$x = \log_{a}{N}$; $y=\log_{b}{N}$; $z=\log_{c}{N}$

$\frac{1}{x} = \frac{1}{\log_{a}{N}}$; $\frac{1}{y} = \frac{1}{\log_{b}{N}}$; $\frac{1}{z} = \frac{1}{\log_{a}{N}}$.

Now let us see what happens to the following two algebraic entities, namely, $\frac{1}{y} - \frac{1}{x}$ and $\frac{1}{z} - \frac{1}{y}$;

Now, $\frac{1}{y} - \frac{1}{x} = \frac{1}{\log_{b}{N}} - \frac{1}{\log_{a}{N}} = \frac{\log_{b}{b}}{\log_{b}{N}} - \frac{\log_{a}{a}}{\log_{a}{N}} = \log_{N}{b} - \log_{N}{a} = \log_{N}{(\frac{b}{a})}$…call this III

Now, $\frac{1}{z} - \frac{1}{y} = \frac{1}{\log_{c}{N}} - \frac{1}{\log_{b}{N}} = \frac{\log_{c}{c}}{\log_{c}{}N} -\frac{\log_{b}{b}}{\log_{b}{N}}= \log_{N}{c}-\log_{N}{b}$

Hence, $\frac{1}{z} - \frac{1}{y}=\log_{N}{c/b}$….equation IV

but it is also given that $b^{2}=ac$…see equation II

Hence, $\frac{b}{a} = \frac{c}{b}$

Take log of above both sides w.r.t. base N:

So, above is equivalent to $\log_{N}{b/a} = \log_{N}{c/b}$

But now see relations III and IV:

Hence, $\frac{1}{y} -\frac{1}{x} = \frac{1}{x} - \frac{1}{y}$

Hence, $\frac{2}{y} = \frac{1}{x} + \frac{1}{z} = \frac{x+z}{xz}$

Hence, $y= \frac{2xz}{x+z}$ as desired.

Regards,

Nalin Pithwa

### Derivatives: Part 10: IITJEE maths tutorial problems for practice

Problem 1: If $x=3\cos{\theta}-\cos^{3}{\theta}$, and $y=3\sin{\theta}-\sin^{3}{\theta}$, then $\frac{dy}{dx}$ is equal to:

(a) $-\cot^{3}{\theta}$ (b) $-\tan^{3}{\theta}$ (c) $\cot^{3}{\theta}$ (d) $\tan^{3}{\theta}$

Problem 2: If $x = \tan{\theta} + \cot{\theta}$, and $y=2 \log{(\cot{\theta})}$, then $\frac{dy}{dx}$ is equal to:

(a) $\tan{(2\theta)}$ (b) $\cot{(2\theta)}$ (c) $\tan{\theta}$ (d) $\sec^{2}{2\theta}$

Problem 3: $\frac{d}{dx}\log{\sqrt{\frac{1-\cos{x}}{1+\cos{x}}}}$ is equal to:

(a) $\tan{\frac{x}{2}}$ (b) $\sin{x}$ (c) cosec(x) (d) $\tan{x}$

Problem 4: $y=2^{2(\log_{2}{(x+2)}-\log_{2}{(x+1)})}$, then $\frac{dy}{dx}$ is:

(a) $\frac{-2(x+2)}{(x+1)^{3}}$ (b) $\frac{4(x+2)}{(x+1)^{3}}$ (c) $\frac{2(x+2)}{(x+1)^{3}}$ (d) $\frac{-6(x+2)}{(x+1)^{3}}$

Problem 5: $\frac{d}{dx}(\arctan{\sqrt{\frac{e^{x}-1}{e^{x}+1}}})$ is equal to:

(a) $\frac{1}{1+e^{2x}}$ (b) $\frac{1}{2\sqrt{e^{2x}-1}}$ (c) $\frac{e^{x}}{2\sqrt{1+e^{2x}}}$ (d) $\frac{1}{2\sqrt{1-e^{2x}}}$

Problem 6: $y=e^{m\arcsin{x}}$ then $(1-x^{2}) (y^{'})^{2}$ is equal to :

(a) $y^{2}$ (b) $m^{2}(1-y^{2})$ (c) $-m^{2}y^{2}$ (d) $m^{2}y^{2}$

Problem 7: If $y = \sin(m \arcsin{x})$ then $(1-x^{2})(\frac{dy}{dx})^{2}$ is

(a) $m^{2}y^{2}$ (b) $m^{2}(1-y^{2})$ (c) $-m^{2}y^{2}$ (d) $m^{2}(1+y^{2})$

Problem 8: $\frac{d}{dx}(\cos{\arctan{x}})$ is:

(a) $\frac{1}{2\sqrt{1+x^{2}}}$ (b) $\frac{-x}{(1+x^{2})^{\frac{3}{2}}}$

(c) $\frac{-x}{\sqrt{1+x^{2}}}$ (d) $\frac{2x}{\sqrt{1+x^{2}}}$

Problem 9: If $y = \arcsin{\frac{a\cos{x}+b\sin{x}}{\sqrt{a^{2}+b^{2}}}}$ then $\frac{d^{2}y}{dx^{2}}$ is:

(a) $-1$ (b) 0 (c) 1 (d) $\arctan{\frac{b}{a}}$

Problem 10: $\arctan{\frac{4x}{4-x^{2}}}$ is:

(a) $\frac{1}{4-x^{2}}$ (b) $\frac{1}{4+x^{2}}$ (c) $\frac{4}{4+x^{2}}$ (d) $\frac{4}{4-x^{2}}$

Regards,

Nalin Pithwa.

### Derivatives: Part 9: IITJEE maths tutorial problems practice

Problem 1: $\frac{d}{dx}((\frac{1}{b}\arctan{\frac{x}{b}})-\frac{1}{a}\arctan{(\frac{x}{a})})$ is equal to:

(a) $\frac{1}{(x^{2}+a^{2})(x^{2}+b^{2})}$ (b) $\frac{a^{2}-b^{2}}{(x^{2}+a^{2})(x^{2}+b^{2})}$

(c) $\frac{x^{2}+a^{2}}{x^{2}+b^{2}}$ (d) $\frac{2x^{2}}{(x^{2}+a^{2})(x^{2}+b^{2})}$

Problem 2: $\frac{d}{dx}(\frac{x}{2} + \frac{1}{2}\log{(\sin{x}+\cos{x})})$ is equal to:

(a) $\frac{\tan{x}}{1+\tan{x}}$ (b) $\frac{1}{1+\cot{x}}$ (c) $\frac{1-\tan{x}}{1+\tan{x}}$ (d) $\frac{1}{1+\tan{x}}$

Problem 3: If $y=\sqrt{\frac{cosec{x}-\cot{x}}{cosec{x}+\cot{x}}}$ where $0, then $\frac{dy}{dx}$ is given by :

(a) $cosec{x}(cosec{x}-\cot{x})$ (b) $cosec{x}(\cot{x}-cosec{x})$ (c) $cosec{x}(\cot{x}-cosec{x})$ (d) $\cot{x}(cosec{x}-\cot{x})$

Problem 4: $\frac{d}{dx}\log {|\sec{(x-\frac{\pi}{4})}+\tan{(x-\frac{\pi}{4})}|}$ is equal to:

(a) $\frac{\sqrt{2}}{\sin{x}-\cos{x}}$ (b) $\frac{\sin{x}}{\sin{x}+\cos{x}}$ (c) $\frac{\sqrt{2}}{\sin{x}+\cos{x}}$ (d) $\frac{1}{\sin{x}+\cos{x}}$

Problem 5:

If $r=a(1+\cos{\theta})$, and $\tan{\phi}=r\frac{d\theta}{dr}$, then $\phi$ is equal to:

(a) $\frac{-2}{\theta}$ (b) $\frac{\pi}{2} + \frac{\theta}{2}$ (c) $-\frac{\theta}{2}$ (d) $\frac{\pi}{2} - \frac{\theta}{2}$

Problem 6: $\frac{d}{dx}\log{(\sqrt{x+ \sqrt{x^{2}+a^{2}}})}$ is equal to:

(a) $\frac{1}{2\sqrt{x^{2}+a^{2}}}$ (b) $\frac{1}{x+\sqrt{x^{2}+a^{2}}}$ (c) $\frac{1}{\sqrt{x^{2}+a^{2}}}$ (d) $\frac{1}{2(x+\sqrt{x^{2}+a^{2}})}$

Problem 7: $\frac{d}{dx}(\log{(1+\sin{(2x)})} + 2 \log{\sec{(\frac{\pi}{4}-x)}})$ is equal to

(a) 0 (b) $\log{2}$ (c) $\frac{4(\cos{x}-\tan{x})}{\sin{x}+\cos{x}}$ (d) $\frac{2\cos{(2x)}}{1+\sin{(2x)}} + \tan{(\frac{\pi}{4}-x)}$

Problem 8: If $x^{2}+xy+y^{2}=1$, then $\frac{dy}{dx}$ is equal to:

(a) $-\frac{x+2y}{y+2x}$ (b) $-\frac{y+2x}{x+2y}$ (c) $\frac{y+2x}{x+2y}$ (d) $\frac{2(x+y)}{y-2x}$

Problem 9: $\frac{d}{dx}(\arcsin{(\sqrt{\frac{1-x}{2}})})$ is equal to:

(a) $\frac{1}{\sqrt{1-x^{2}}}$ (b) $\frac{-1}{\sqrt{1-x^{2}}}$ (c) $\frac{1}{2\sqrt{1-x^{2}}}$ 9d) $\frac{-1}{2\sqrt{1-x^{2}}}$

Problem 10: If $y = \arctan{(\frac{3a^{2}x-x^{3}}{x^{3}-3ax^{2}})}$ then $\frac{dy}{dx}$ is equal to:

(a) $\frac{3}{a}$ (b) $\frac{1}{a}$ (c) $\frac{3x}{a}$ (d) $\frac{3a}{x^{2}+a^{2}}$

Cheers,

Nalin Pithwa

### Derivatives: part 8: IITJEE mains tutorial problems practice

Problem 1: If $y=b(\arctan{(\frac{x}{y})})+ \arctan{(\frac{y}{x})}$, then $\frac{dy}{dx}$ is equal to:

(a) $\frac{x}{2}$ (b) -1 (c) 0 (d) b

Problem 2: If $r=a(1+\cos{\theta})$, then $\sqrt{r^{2}+(\frac{dr}{d\theta})^{2}}$ is:

(a) $2a\cos{\theta}$ (b) $2a \sin{(\frac{\theta}{2})}$ (c) $2a \cos{(\frac{\theta}{2})}$ (d) $2a \sin{\theta}$

Problem 3: $\frac{d}{dx}\arctan{\log_{10}{x}}$ is equal to:

(a) $\frac{1}{1 + (\log_{10}{x})^{2}}$ (b) $\frac{1}{x \log_{10}{(1+ (\log_{10}{x})^{2})}}$ (c) $\frac{1}{x(1+(\log_{10}{x})^{2})}$ (d) $\frac{1}{10 \log{x}(1+(\log_{10}{x})^{2})}$

Problem 4: If $\sin^{2}(mx) + \cos^{2}(ny)=a^{2}$, then $\frac{dy}{dx}$ is equal to:

(a) $\frac{m \sin{(2mx)}}{n \sin{(2ny)}}$ (b) $\frac{n\sin{(2mx)}}{m\sin{(2ny)}}$ (c) $\frac{n\sin{(2ny)}}{m\sin{(2mx)}}$ (d) $\frac{-m\sin{(2mx)}}{n\sin{(2ny)}}$

Problem 5: $\frac{d}{dx}(\frac{\tan{x}-\cot{x}}{\tan{x}+\cot{x}})$ is equal to:

(a) $2\sin{(2x)}$ (b) $\sin{(2x)}$ (c) $-2 \sin{(2x)}$ (d) $2\cos{(2x)}$

Problem 6: If $y=\log_{5}{(\log_{5}{x})}$ then the value of $\frac{dy}{dx}$ is

(a) $\frac{1}{x \log_{5}{x}}$ (b) $\frac{1}{x \log_{5}{x}. (\log{5})^{2}}$ (c) $\frac{1}{\log{5}.x\log{x}}$ (d) $\frac{1}{x(\log_{5}{x})^{2}}$

Problem 7: $\frac{d}{dx}(ax+b)^{cx+d}$ is equal to:

(a) $(ax+b)^{cx+d}(\frac{cx+d}{ax+b} + \log{(ax+b)})$ (b) $(ax+b)^{cx+d}(\frac{cx+d}{ax+b} + c \log{(ax+b)})$ (c) $a(ax+b)^{cx+d}$ (d) none

Problem 8: $\frac{d}{dx}(\log{(\frac{\sin{(x-b)}}{\sin{(x-a)}})})$ is equal to:

(a) $\frac{\cos{(a-b)}}{\sin{(x-a)}\sin{(x-b)}}$ (b) $\frac{\sin{(b-a)}}{\sin{(x-a)}\sin{(x-b)}}$

(c) $\frac{\sin{(a-b)}}{\sin{(x-a)}\sin{(x-b)}}$ (d) $\frac{\cos{(b-a)}}{\sin{(x-a)}\sin{(x-b)}}$

Problem 9: If $y = \sqrt{\frac{\sec{x}+\tan{x}}{\sec{x}-\tan{x}}}$ and $0, then $\frac{dy}{dx}$ is :

(a) $\sec{x}(\sec{x}-\tan{x})$ (b) $\sec{x}(\sec{x}+\tan{x})$ (c) $\tan{x}(\sec{x}+\tan{x})$ (d) $\tan{x}(\sec{x}-\tan{x})$

Problem 10: $\frac{d}{dx}e^{ax}(a\sin{(bx)}-b\cos{(bx)})$ is equal to:

(a) $e^{ax}(\sin{(bx)})$ (b) $(a^{2}+b^{2})e^{ax}\sin{(bx)}$ (c) $e^{ax}\cos{(bx)}$ (d) $(a^{2}+b^{2})e^{ax}\cos{(bx)}$

Cheers,

Nalin Pithwa.

### Derivatives: part 7: IITJEE tutorial problems practice

Problem 1: Differential coefficient of $\sec{\arctan{x}}$ is

(a) $\frac{x}{1+x^{2}}$ (b) $x\sqrt{1+x^{2}}$ (c) $\frac{1}{\sqrt{1+x^{2}}}$ (d) $\frac{x}{\sqrt{1+x^{2}}}$

Problem 2: If $\sin{(x+y)} = \log{(x+y)}$, then $\frac{dy}{dx}$ is equal to :

(a) 2 (b) -2 (c) 1 (d) -1

Problem 3: If $y = \arcsin{\sqrt{x-ax}-\sqrt{a-ax}}$, then $\frac{dy}{dx}$ is equal to:

(a) $\frac{1}{2\sqrt{x}\sqrt{1-x}}$ (b) $\sin{(\sqrt{x})} \times \sin{(\sqrt{a})}$

(c) $\frac{1}{\sin{\sqrt{a-ax}}}$ (d) zero

Problem 4: For the differentiable function f, the value of : $\lim_{h \rightarrow 0} \frac{(f(x+h))^{2}-(f(x))^{2}}{2h}$ is equal to:

(a) $(f^{'}(x))^{2}$ (b) $\frac{1}{2}(f(x))^{2}$ (c) $f(x)f^{'}(x)$ (d) zero

Problem 5: The derivative of $\arctan{\frac{\sqrt{1+x^{2}}-1}{x}}$ w.r.t. $\arctan{(\frac{2x\sqrt{1-x^{2}}}{1-2x^{2}})}$ at $x=0$ is :

(a) $\frac{1}{8}$ (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) 1

Problem 6: If $x = e^{y+e^{y+e^{y+e^{y+ \ldots}}}}$ then $\frac{dy}{dx}$ is

(a) $\frac{x}{1+x}$ (b) $\frac{1}{x}$ (c) $\frac{1-x}{x}$ (d) $\frac{-1}{x^{2}}$

Problem 7: Consider the following statements:

(1) $(\frac{f}{g})^{'} = \frac{f^{'}}{g^{'}}$ (2) $\frac{(fg)^{'}}{fg} = \frac{f^{'}}{f} + \frac{g^{'}}{g}$

(3) $\frac{(f+g)^{'}}{f+g} = \frac{f^{'}}{f} + \frac{g^{'}}{g}$ (4) $\frac{(f/g)^{'}}{f/g} = \frac{f^{'}}{f} + \frac{g^{'}}{g}$

Which of the following statements are true?

(a) 1 and 2 (b) 2 and 3 (c) 2 and 4 (d) 3 and 4

Problem 8: If $y=e^{x+3\log{x}}$ then $\frac{dy}{dx} =$

(a) $e^{x+3\log{x}}$ (b) $e^{x}.x^{2}(x+3)$ (c) $e^{x}. e^{3\log{x}}$ (d) $3x^{2}e^{x}$

Problem 9: If $y=\sin^{2}(x \deg)$, then find the value of $\frac{dy}{dx}$ is:

(a) $\frac{\pi}{360}\sin{(2 x \deg)}$ (b) $\frac{\pi}{2}\sin{(2x\deg)}$ (c) $180 \sin {(2x\deg)}$ (d) $\frac{\pi}{180}\sin{(2x\deg)}$

Problem 10: If $y=\log_{a}{x} + \log_{x}{a} + \log_{x}{x}+ \log_{a}{a}$ then the value of $\frac{dy}{dx}$ is:

(a) $\frac{1}{x}+x\log{a}$ (b) $\frac{\log{a}}{x} + \frac{x}{\log{a}}$ (c) $\frac{1}{x \log{a}}+ x \log{a}$ (d) $\frac{1}{x\log{x}} - \frac{\log{a}}{x(\log{x})^{2}}$

Cheers,

Nalin Pithwa.

### Derivatives: part 6: IITJEE tutorial practice problems

Problem 1:

If $\sec {(\frac{x+y}{x-y})}=a$, then $\frac{dy}{dx}$ is (i) $\frac{x}{y}$ (ii) $\frac{y}{x}$ (iii) y (iv) $x$

Problem 2:

If $f(x) = x+ 2$, when $-1;

$f(x)=5$, when $x=3$;

$f(x) = 8-x$, when $x>3$; then, at $x=3$, the value of $f^{'}(x)$ is

(a) 1 (b) -1 (c) 0 (d) does not exist.

Problem 3:

If $y = x \tan{y}$, then $\frac{dy}{dx}$ is equal to

(i) $\frac{\tan{y}}{x-x^{2}-y^{2}}$ (ii) $\frac{\tan{y}}{y-x}$

(iii) $\frac{y}{x-x^{2}-y^{2}}$ (iv) $\frac{\tan{x}}{x-y^{2}}$

Problem 4:

If g is the inverse function of f and $f^{'}(x) = \frac{1}{1+x^{n}}$, then $g^{'}(x)$ is equal to

(i) $1 + (g(x))^{n}$ (ii) $1+g(x)$ (iii) $1-g(x)$ (iv) $1-(g(x))^{n}$

Problem 5:

If $f(x) = \log_{x^{2}}(\log{x})$ then $f(x)$ at $x=c$ is :

(i) 0 (ii) 1 (iii) $\frac{1}{e}$ (iv) $\frac{1}{2e}$

Problem 6:

If $y = (\sin{x})^{\tan{x}}$ then $\frac{dy}{dx}$ is equal to :

(i) $(\sin{x})^{\tan{x}}(1+ \sec^{2}{x} \log{\sin{x}})$

(ii) $\tan{x}. (\sin{x})^{\tan{x}-1} \times \cos{x}$

(iii) $(\sin{x})^{\tan{x}}\sec^{2}{x} \times \log{\sin{x}}$

(iv) $\tan{x} (\sin{x})^{\tan{x}-1}$

Problem 7:

If $y = \sqrt{\sin{x}+y}$, then $\frac{dy}{dx}$ equals:

(i) $\frac{\sin{x}}{2y-1}$ (ii) $\frac{\sin{x}}{1-2y}$ (iii) $\frac{\cos{x}}{1-2y}$

(iv) $\frac{\cos{x}}{2y-1}$

Problem 8:

If $x = \sqrt{\frac{1-t^{2}}{1+t^{2}}}$ and $y = \sqrt{\frac{\sqrt{1+t^{2}}-sqrt{1-t^{2}}}{\sqrt{1+t^{2}}+\sqrt{1-t^{2}}}}$

then the value of $\frac{d^{2}y}{dx^{2}}$ at $t=0$ is given by:

(a) 0 (b) 1/2 (c) 1 (d) -1

Problem 9:

If $x = a \cos^{3}{\theta}$, $y = a \sin^{3}{\theta}$, then $\sqrt{1 + (\frac{dy}{dx})^{2}}$ is equal to:

(i) $\sec^{2}{\theta}$ (ii) $\tan^{2}{\theta}$ (iii) $\sec{\theta}$ (iv) $|\sec{\theta}|$

Problem 10:

If $y = \arcsin{\sqrt{1-x}} + \arccos{\sqrt{x}}$, then $\frac{dy}{dx}$ equals:

(a) $\frac{1}{\sqrt{x(1-x)}}$ (b) $\frac{1}{x(1+x)}$ (c) $\frac{-1}{\sqrt{x(1-x)}}$ (d) none

Regards,

Nalin Pithwa