Derivatives: part 4: IITJEE maths tutorial problems for practice

Problem 1:

Given x=x(t), y=y(t), then \frac{d^{2}y}{dx^{2}} is equal to

(a) \frac{\frac{d^{2}y}{dt^{2}}}{\frac{d^{2}x}{dt^{2}}}

(b) \frac{\frac{d^{2}y}{dt^{2}} \times \frac{dx}{dt} -  \frac{dy}{dt} \times \frac{d^{2}x}{dt^{2}}}{(\frac{dx}{dt})^{3}}

(c) \frac{\frac{dx}{dt} \times \frac{d^{2}y}{dt^{2}} - \frac{d^{2}x}{dt^{2}} \times \frac{dy}{dt}}{(\frac{dx}{dt})^{2}}

(d) \frac{1}{\frac{d^{2}x}{dy^{2}}}

Problem 2:

\frac{d}{dx}(\arctan{\sec{x}+ \tan{x}}) is equal to

(a) 0 (b) \sec{x}-\tan{x} (c) \frac{1}{2} (d) 2

Problem 3:

If y= \sqrt{x + \sqrt{x + \sqrt{x} + \ldots}}, then \frac{dy}{dx} is equal to :

(a) 1 (b) \\frac{1}{xy} (c) \frac{1}{2y-x} (d) \frac{1}{2y-1}

Problem 4:

If f(x) = \left| \begin{array}{ccc} x & x^{2} & x^{3} \\ 1 & 2x & 3x^{2} \\ 0 & 2 & 6x \end{array} \right|, then f^{'}(x) =

(a) 12 (b) 6x^{2} (c) 6x (d) 12x^{2}

Problem 5:

If y = (\frac{x^{a}}{x^{b}}) ^{a+b} \times (\frac{x^{b}}{x^{c}})^{b+c} \times (\frac{x^{c}}{x^{a}})^{c+a}, then \frac{dy}{dx}=

(a) 0 (b) 1 (c) a+b+c (d) abc

Problem 6:

If y = \arctan{\frac{x-\sqrt{1-x^{2}}}{x+\sqrt{1-x^{2}}}}, then \frac{dy}{dx} is equal to

(a) \frac{1}{1-x^{2}} (b) \frac{1}{\sqrt{1-x^{2}}} (c) \frac{1}{1+x^{2}} (d) \frac{1}{\sqrt{1+x^{2}}}

Problem 7:

If x=at^{2}, y=2at, then \frac{d^{2}y}{dx^{2}}=

(a) \frac{1}{t^{2}} (b) \frac{1}{2at^{3}} (c) \frac{1}{t^{3}} (d) \frac{-1}{2at^{3}}

Problem 8:

If y=ax^{n+1} +bx^{-n}, then x^{2}\frac{d^{2}y}{dx^{2}}=

(a) n(n-1)y (b) ny (c) n(n+1)y (d) n^{2}y

Problem 9:

If x=t^{2}, y=t^{3}, then \frac{d^{2}y}{dx^{2}}=

(a) \frac{3}{2} (b) \frac{3}{4t} (c) \frac{3}{2t} (d) 0

Problem 10:

If y=a+bx^{2}, a, b arbitrary constants, then

(a) \frac{d^{2}}{dx^{2}} = 2xy (b) x \frac{d^{2}y}{dx^{2}} - \frac{dy}{dx} + y=0 (c) x \frac{d^{2}y}{dx^{2}} = \frac{dy}{dx} (d) x \frac{d^{2}y}{dx^{2}} = 2xy

Regards,

Nalin Pithwa

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: