Problem 1:
Differential coefficient of w.r.t.
is
(a) (b)
(c)
(d)
Problem 2:
The derivative of an even function is always:
(a) an odd function (b) does not exist (c) an even function (d) can be either even or odd.
Problem 3:
The derivative of w.r.t.
is
(a) (b)
(c)
(d)
Problem 4:
If , then
is
(a) (b)
(c)
(d)
Problem 5:
is equal to
(a) (b)
(c)
(d)
Problem 6:
If , then
is
(a) (b)
(c)
(d)
Problem 7:
If , then
is equal to:
(a) (b)
(c)
(d)
Problem 8:
If , then
is
(a) (b)
(c)
(d)
Problem 9:
If , then
is equal to
(a) (b)
(c)
(d)
Problem 10:
If , a polynomial of degree 3, then
is equal to
(a) (b)
(c)
(d) a constant.
Regards,
Nalin Pithwa.