Problem 1:

Differential coefficient of w.r.t. is

(a) (b) (c) (d)

Problem 2:

The derivative of an even function is always:

(a) an odd function (b) does not exist (c) an even function (d) can be either even or odd.

Problem 3:

The derivative of w.r.t. is

(a) (b) (c) (d)

Problem 4:

If , then is

(a) (b) (c) (d)

Problem 5:

is equal to

(a) (b) (c) (d)

Problem 6:

If , then is

(a) (b) (c) (d)

Problem 7:

If , then is equal to:

(a) (b) (c) (d)

Problem 8:

If , then is

(a) (b) (c) (d)

Problem 9:

If , then is equal to

(a) (b) (c) (d)

Problem 10:

If , a polynomial of degree 3, then is equal to

(a) (b) (c) (d) a constant.

Regards,

Nalin Pithwa.