Limits and Continuity: part 5: IITJEE Math: Tutorial problems for practice

Problem 1:

Find the value of the following limit:

\lim_{x \rightarrow 0} \frac{\sin{a} - \tan{a}}{\sin^{a}}

Problem 2:

Find the values of the constant a and b such that the following limit is zero:

\lim_{x \rightarrow \infty} [\frac{x^{2}+1}{x+1} -ax-b]

Problem 3:

Find the value of the following limit:

\lim_{\alpha \rightarrow \beta} \frac{\sin^{2}{\alpha}-\sin^{2}{\beta}}{\alpha^{2}-\beta^{2}}

Problem 4:

If a, b, c, d are positive, then find the value of the following limit:

\lim_{x \rightarrow \infty}(1+\frac{1}{a+bx})^{c+dx}

Problem 5:

Find the value of the following limit:

\lim_{x \rightarrow 0} \frac{(1-\cos{(2x)})\sin{(5x)}}{x^{2}\sin{(3x)}}

Problem 6:

Find the value of the following limit:

\lim_{x \rightarrow \infty} \frac{\sqrt{x^{2}-1}}{2x+1}

Problem 7:

Find the value of the following limit:

\frac{\log{(1+x+x^{2})}+\log{(1-x+x^{2})}}{\sec{x}-\cos{x}}

Problem 8:

Find the value of the following limit:

\lim_{x \rightarrow \infty} (\frac{2+x}{1+x})^{2x+1}

Problem 9:

Find the value of f(0) such that the following function is continuous at zero:

f(x) = (x+1)^{\cot{x}}

Problem 10:

Let f^{''}(x) be continuous at zero and f^{''}(0)=4. Then, find the numerical value of the following limit:

\lim_{x \rightarrow 0}\frac{2f(x)-3f(2x)+f(4x)}{x^{2}}

Problem 11:

Find the value of the following limit:

\lim_{n \rightarrow \infty} (\frac{n^{3}}{3n^{2}-4} - \frac{n^{2}}{3n+2})

Problem 12:

Find the values of x where the following function is discontinuous:

f(x) = \frac{\sin{x} \log{(x-2)}}{(x^{2}-4x+3)}

Problem 13:

The value of p for which the following function may be continuous at zero is what:

f(x) = \frac{(4x-1)^{3}}{(\sin{\frac{x}{p}})(\log{(1+\frac{x^{2}}{3})})}, when x \neq 0, and

f(x) = 12(\log{4})^{3}, when x = 0.

Problem 14:

Find the value of the following limit:

\lim_{x \rightarrow 0} \frac{1-\cos{(mx)}}{1-\cos{(nx)}}

Problem 15:

If f(x) = \frac{4-7x}{3x+4} and \lim_{x \rightarrow 2}f(x) = k, and \lim_{x \rightarrow 0}f(x) = m, then the equation whose roots are \frac{1}{k}, \frac{1}{m} is (a) x^{2}+x=0 (b) x^{2}-1=0 (c) x^{2}+1=0 (d) x^{2}+2x=0

Problem 16:

Find the value of the following limit:

\lim_{x \rightarrow 1} \frac{x+x^{2}+x^{3}+\ldots + x^{n}-n}{x-1}

Problem 17:

Find the value of the following limit:

\lim_{x \rightarrow 1} \frac{\sqrt[n]{x^{m}}-1}{\sqrt[m]{x^{n}}-1}

Problem 18:

Find the value of the following limit:

\lim_{x \rightarrow a} \frac{\tan{x} - \tan{a}}{\sin{a} - \sin{x}}

Regards,

Nalin Pithwa

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: