## Applications of Derivatives IITJEE Maths tutorial: practice problems part IV

Question 1.

If the point on $y = x \tan {\alpha} - \frac{ax^{2}}{2u^{2}\cos^{2}{\alpha}}$, where $\alpha>0$, where the tangent is parallel to $y=x$ has an ordinate $\frac{u^{2}}{4a}$, then what is the value of $\alpha$?

Question 2:

Prove that the segment of the tangent to the curve $y=c/x$, which is contained between the coordinate axes is bisected at the point of tangency.

Question 3:

Find all the tangents to the curve $y = \cos{(x+y)}$ for $-\pi \leq x \leq \pi$ that are parallel to the line $x+2y=0$.

Question 4:

Prove that the curves $y=f(x)$, where $f(x)>0$, and $y=f(x)\sin{x}$, where $f(x)$ is a differentiable function have common tangents at common points.

Question 5:

Find the condition that the lines $x \cos{\alpha} + y \sin{\alpha} = p$ may touch the curve $(\frac{x}{a})^{m} + (\frac{y}{b})^{m}=1$.

Question 6:

Find the equation of a straight line which is tangent to one point and normal to the point on the curve $y=8t^{3}-1$, and $x=4t^{2}+3$.

Question 7:

Three normals are drawn from the point $(c,0)$ to the curve $y^{2}=x$. Show that c must be greater than 1/2. One normal is always the x-axis. Find c for which the two other normals are perpendicular to each other.

Question 8:

If $p_{1}$ and $p_{2}$ are lengths of the perpendiculars from origin on the tangent and normal to the curve $x^{2/3} + y^{2/3}=a^{2/3}$ respectively, prove that $4p_{1}^{2} + p_{2}^{2}=a^{2}$.

Question 9:

Show that the curve $x=1-3t^{2}$, and $y=t-3t^{3}$ is symmetrical about x-axis and has no real points for $x>1$. If the tangent at the point t is inclined at an angle $\psi$ to OX, prove that $3t= \tan {\psi} +\sec {\psi}$. If the tangent at $P(-2,2)$ meets the curve again at Q, prove that the tangents at P and Q are at right angles.

Question 10:

Find the condition that the curves $ax^{2}+by^{2}=1$ and $a^{'}x^{2} + b^{'}y^{2}=1$ intersect orthogonality and hence show that the curves $\frac{x^{2}}{(a^{2}+b_{1})} + \frac{y^{2}}{(b^{2}+b_{1})} = 1$ and $\frac{x^{2}}{a^{2}+b_{2}} + \frac{y^{2}}{(b^{2}+b_{2})} =1$ also intersect orthogonally.

More later,

Nalin Pithwa.

This site uses Akismet to reduce spam. Learn how your comment data is processed.