Arithmetic Puzzle


Following is a very common arithmetic puzzle that you may have encountered as a child:

Express any whole number $latex n&bg=ffffff$ using the number 2 precisely four times and using only well-known mathematical symbols.

This puzzle has been discussed on pp. 172 of Graham Farmelo’s “The Strangest Man“, and how Paul Dirac solved it by using his knowledge of “well-known mathematical symbols”:

$latex displaystyle{n = -log_{2}left(log_{2}left(2^{2^{-n}}right)right) = -log_{2}left(log_{2}left(underbrace{sqrt{sqrt{ldotssqrt{2}}}}_text{n times}right)right)}&bg=ffffff$

This is an example of thinking out of the box, enabling you to write any number using only three/four 2s. Though, using a transcendental function to solve an elementary problem may appear like an overkill.  But, building upon such ideas we can try to tackle the general problem, like the “four fours puzzle“.

This post on Puzzling.SE describes usage of following formula consisting of  trigonometric operation $latex cos(arctan(x)) = frac{1}{sqrt{1+x^2}}&bg=ffffff$ and $latex tan(arcsin(x))=frac{x}{sqrt{1-x^2}}&bg=ffffff$ to obtain the square…

View original post 35 more words

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: