Follow Descartes’ Historically Famous Problems !

Problem 1:

Three circles touching one another externally have radii r_{1}, r_{2} and r_{3}. Determine the radii of the two circles that can be drawn touching all the three circles.

Problem 2:

Consider a circle, say (numbered 1) of unit radius 1. Inside this circle, two circles are drawn (say, numbered 2 and 3), each of radius \frac{1}{2}, which touch each other externally and the first circle internally. Determine the radius of the fourth circle, which touches circles 2 and 3 externally and circle 1 internally. Determine the radius of the fifth circle, which touches each of the circles 2, 3, and 4 externally. Determine the radius of the sixth circle, which touches circles 2 and 4 externally and circle 1 internally. One might notice that curvature of all such circles drawn within the first circle has integer curvature!

It is such historically famous problems (within scope of IITJEE Mains and IITJEE Advanced Maths) which all students should try to internalize all the concepts of Math for IITJEE. Also, in a similar vein, you should practice deriving all basic formulae, relationships of co-ordinate geometry.

More later,

Nalin Pithwa.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: