Maxima and Minima using calculus

Problem:

The vertices of an (n+1)-gon lie  on the sides of a regular n-gon and divide its perimeter into  parts of equal length. How should one construct the (n+1)- gon so that its area is :

(a) maximum

(b) minimum

Hint only:

[One of the golden rule of solving problems in math/physics is to draw diagrams, as had benn emphasized by the maverick American physics Nobel Laureate, Richard Feynman. He expounded this technique even in software development. So, in the present problem, first draw several diagrams.]

There exists a side B_{1}B_{2} of the (n+1) -gon that lies entirely on a side A_{1}A_{2} of the n-gon. Let b=B_{1}B_{2} and b=A_{1}A_{2}. Show that b=\frac{n}{n+1}a. Then, for x=A_{1}B_{1}, we have 0 \leq x \leq \frac{n}{n+1} and the area S of the (n+1) -gon is given by

S(x)=\frac{\sin{\phi}}{2}\Sigma_{i=1}^{n}(\frac{i-1}{n+1}a+x)(\frac{n-i+1}{n+1}a-x)

where \phi=\angle{A_{1}A_{2}A_{3}}. Thus, S(x) is a quadratic function of x. Show that S(x) is a minimal when x=0 or x=\frac{a}{n+1} and S(x) is maximal when x=\frac{a}{2(n+1)}.

Let me know if you have any trouble when you attempt it,

-Nalin Pithwa

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: