Maxima and Minima using calculus


The vertices of an (n+1)-gon lie  on the sides of a regular n-gon and divide its perimeter into  parts of equal length. How should one construct the (n+1)- gon so that its area is :

(a) maximum

(b) minimum

Hint only:

[One of the golden rule of solving problems in math/physics is to draw diagrams, as had benn emphasized by the maverick American physics Nobel Laureate, Richard Feynman. He expounded this technique even in software development. So, in the present problem, first draw several diagrams.]

There exists a side B_{1}B_{2} of the (n+1) -gon that lies entirely on a side A_{1}A_{2} of the n-gon. Let b=B_{1}B_{2} and b=A_{1}A_{2}. Show that b=\frac{n}{n+1}a. Then, for x=A_{1}B_{1}, we have 0 \leq x \leq \frac{n}{n+1} and the area S of the (n+1) -gon is given by


where \phi=\angle{A_{1}A_{2}A_{3}}. Thus, S(x) is a quadratic function of x. Show that S(x) is a minimal when x=0 or x=\frac{a}{n+1} and S(x) is maximal when x=\frac{a}{2(n+1)}.

Let me know if you have any trouble when you attempt it,

-Nalin Pithwa


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: