A complex equation

Find the number of solutions of the equation z^{3}+\overline{z}=0.


Given that z^{3}+\overline{z}=0. Hence, z^{3}=-z.

|z|^{3} =|-\overline{z}| \Longrightarrow |z|^{3}=|z|.Hence, we get

|z|(|z|-1)(|z|+1)=0 \Longrightarrow |z|=0, |z|=1 (since |z|+1>0)

If |z|=1, we get |z|^{2}=1 \Longrightarrow z.\overline{z}=1.

Thus, z^{3}+\overline{z}=0 \Longrightarrow z^{3}+1/z=0

Thus, z^{4}+1=0 \Longrightarrow z^{4}=\cos{\pi}+i\sin{\pi}, that is,

z=\cos{\frac{2k+1}{4}}\pi+i\sin{\frac{2k+1}{4}}\pi for k=0,1,2,3. Therefore, the given equation has five solutions.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: