Jensen’s inequality and trigonometry

The problem of maximizing \cos{A}+\cos{B}+\cos{C} subject to  the constraints A \geq 0,

B \geq 0, C \geq 0 and A+B+C=\pi can be done if instead of the AM-GM inequality we use a stronger inequality, called Jensen’s inequality. It is stated as follows:

Theorem. 

Suppose h(x) is a twice differentiable, real-valued function on an interval [a,b] and that h^{''}(x)>0 for all a<x<b. Then, for every positive integer m and for all points x_{1}, x_{2}, \ldots x_{m} in [a,b], we have

h(\frac{x_{1}+x_{2}+\ldots+x_{m}}{m}) \leq \frac{h(x_{1})+h(x_{2})+h(x_{3})+\ldots+h(x_{m})}{m}

Moreover, equality holds if and only if x_{1}=x_{2}=\ldots=x_{m}. A similar result holds if

h^{''}(x)<0 for all a<x<b except that the inequality sign is reversed.

What this means is that the value of assumed by the function h at the arithmetic mean of a given set of points in the interval [a,b] cannot exceed the arithmetic mean of the values assumed by h at these points, More compactly, the value at a mean is at most the mean of values if h^{''} is positive in the open interval (a,b) and the value at a mean is at least the mean of values if h^{''} is negative on it. (Note that h^{''} is allowed to vanish at one or both the end-points of the interval [a,b].)

A special case of Jensen’s inequality is the AM-GM inequality.

Jensen’s inequality can also be used to give easier proofs of certain other trigonometric inequalities whose direct proofs are either difficult or clumsy. For example, applying Jensen’s inequality to the function h(x)=\sin{x} on the interval [0,\pi] one gets the following result. (IITJEE 1997)

If n is a positive integer and 0<A_{i}<\pi for i=1,2,\ldots, n, then

\sin{A_{1}}+\sin{A_{2}}+\ldots+\sin{A_{n}} \leq n \sin{(\frac{A_{1}+A_{2}+\ldots+A_{n}}{n})}.

More later,

Nalin Pithwa

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: