Two powerful wise quotes

  1. I am a pessimist by logic, but optimist by will-power. — Anon.
  2. The only thing greater than the power of the human mind is the courage of the human heart. — John Forbes Nash, Jr., Nobel Laureate mathematician (Economics Prize), Abel Laureate, victim of paranoid schizophrenia for 30 years.

 

Some fun – Math Late Show with David Letterman and Daniel Tammet

Stretching is a good exercise but…

Stretching is a good exercise, but stretching the mind through math is even better !!

Ha…ha…ha…LOL 🙂

Nalin Pithwa

PS: An object does not change topologically if it is “stretched”…Ha, ha, ha…LOL 🙂

Games, social behavior, chess, economics and maths

The following is some trivia but in fact, not so trivia, in this age of data science, data analytics, social media platforms, on-line gaming etc…If you decide to ponder over deep…you will become a giant mathematician or applied mathematician or of course, a computer science wunderkind..

The following is “picked out as it is” from a famous biography, (which regular readers of my blog will now know, perhaps, is a favorite mathematical biography for me)…A Beautiful Mind by Sylvia Nasar, biography of mathematical genius, John Forbes Nash, Jr, Nobel Laureate (Economics) and Abel Laureate:

“It was the great Hungarian-born polymath John von Neumann who first recognized that social behaviour could be analyzed as games. Von Neumann’s 1928 article on parlor games was the first successful attempt to derive logical and mathematical rules about rivalries. Just as William Blake saw the universe in a grain of sand, great scientists have often looked for clues in vast and complex problems in the small, familiar phenomena of daily life. Isaac Newton reached insights about the heavens by juggling wooden balls. Albert Einstein contemplated a boat paddling upriver. Von Neumann pondered the game of poker.

A seemingly trivial and playful pursuit like poker, von Neumann argued, might hold the key to more serious human affairs for two reasons. Both poker and economic competition require a certain type of reasoning, namely the rational calculation of advantage and disadvantage based on some internally consistent system of values (“more is better than less’). And, in both, the outcome for any individual actor depends not only on his own actions, but on the independent actions of others.

More than a century earlier, the French economist Antoine-Augustin Cournot had pointed out that problems of economic cnoice were greatly simplified when either none or a large number of other agents were present. Alone on his island, Robinson Crusoe does not have to worry about whose actions might affect him. Neither do Adam Smith’s butchers and bakers. They live in a world with so many others that their actions, in effect, cancel each other out. But when there is more than one agent but not so many that their influence may be safely ignored, strategic behavior raises a seemingly insoluble problem:”I think that he thinks that I think that he thingks,” and so forth…

So play games but think math ! 🙂

Nalin Pithwa

 

 

You and your research ( You and your studies) : By Richard Hamming, AT and T, Bell Labs mathematician;

Although the title is grand (and quite aptly so)…the reality is that it can be applied to serious studies for IITJEE entrance, CMI entrance, highly competitive math olympiads, and also competitive coding contests…in fact, to various aspects of student life and various professional lifes…

Please read the whole article…apply it wholly or partially…modified or unmodified to your studies/research/profession…these are broad principles of success…

https://www.cs.virginia.edu/~robins/YouAndYourResearch.html

 

Tricky Trigonometry questions for IITJEE mains maths practice

Prove the following:

  1. \frac{\sin{A}}{1-\cos{A}} = \frac{1+\cos{A}-\sin{A}}{\sin{A}-1+\cos{A}}
  2. \frac{1+\sin{A}}{\cos{A}}=\frac{1+\sin{A}+\cos{A}}{\cos{A}+1-\sin{A}}
  3. \frac{\tan{A}}{\sec{A}-1}=\frac{\tan{A}+\sec{A}+1}{\sec{A}-1+\tan{A}}
  4. \frac{1+\csc{A}+ \cot{A}}{1+\csc{A}-\cot{A}} = \frac{\csc{A}+\cot{A}-1}{\cot{A}-\csc{A}+1}

Hint: Directly trying to prove LHS is RHS is difficult in all the above; or even trying to transform RHS to LHS is equally difficult; it is quite easier to prove the equivalent statement by taking cross-multiplication of the appropriate expressions. 🙂

Regards,

Nalin Pithwa.

What motivated Einstein?

The most beautiful thing that we can experience is the mysterious. It is the source of all true art and sciences.

— Albert Einstein, in What I believe, 1930.

E. T. Bell’s Men of Mathematics, John Nash, Jr., genius mathematician, Nobel Laureate and Abel Laureate; and Albert Einstein

(From A Beautiful Mind by Sylvia Nasar)

The first bite of mathematical apple probably occurred when Nash at around age thirteen or fourteen read E. T. Bell’s extra ordinary book Men of Mathematics — an experience he alludes to in his autobiographical essay (of Nobel Prize, Economics) Bell’s book, which was published in 1937, would have given Nash the first glimpse of real mathematics, a heady realm of symbols and mysteries entirely unconnected to the seemingly arbitrary and dull rules of arithmetic and geometry taught in school or even in the entertaining but ultimately trivial calculations that Nash carried out in the course of chemistry and electrical experiments.

Men of Mathematics consists of lively — and, as it turns out, not entirely accurate — biographical sketches. Its flamboyant author, a professor of mathematics at California Institute of Technology, declared himself disgusted with “the ludicrous untruth of the traditional portrait of the mathematician” as a “slovenly dreamer totally devoid of common sense.” He assured his readers that the great mathematicians of history were an exceptionally virile and even adventuresome breed. He sought to prove his point with vivid accounts of infant precocity, monstrously insensitive educational authorities, crushing poverty, jealous rivals, love affairs, royal patronage, and many varieties of early death, including some resulting from duels. He even went so far in defending mathematicians as to answer the question : “How many of the great mathematicians have been perverts?” None, was his answer. ‘Some lived celibate lives, usually on account of economic disabilities, but the majority were happily married…The only mathematician discussed here whose life might offer something of interest to a Freudian is Pascal.’ The book became a bestseller as soon as it appeared.

What makes Bell’s account not merely charming, but intellectually seductive, are his lively descriptions of mathematical problems that inspired his subjects when they were young, and his breezy assurance that there were still deep and beautiful problems that could be solved by amateurs, boys of fourteen, to be specific. It was Bell’s essay on Fermat, one of the greatest mathematicians of all time, but a perfectly conventional seventeenth century French magistrate, whose life was “quiet, laborious and uneventful,” that caught Nash’s eye. The main interest of Fermat, who shares the credit for inventing calculus with Newton and analytic geometry with Descartes, was number theory — “the higher arithmetic.” Number theory, investigates the natural relationships of those common whole numbers 1, 2, 3, 4, 5…which we utter almost as soon as we learn to talk.

For Nash, proving a theorem known as Fermat’s (Little) Theorem about prime numbers, those mysterious integers that have no divisors besides themselves and one produced an epiphany of sorts. Often mathematical geniuses, Albert Einstein and Bertrand Russell among them recount similar revelatory experiences in early adolescence. Einstein recalled the “wonder” of his first encounter with Euclid at age twelve:

“Here were assertions, as for example the intersection of three altitudes of a triangle at one point which — though by no means evident — could nevertheless be proved with such certainty that any doubt appeared to be out of the question. This lucidity and certainty made an indescribable impression on me.”

Nash does not describe his feelings when he succeeded in devising a proof for Fermat’s assertion that if n is any whole number and p any prime number, then n multiplied by itself p times minus p is divisible by p. But, he notes the fact in his autobiographical essay, and his emphasis on this concrete result of his initial encounter with Fermat suggests that the thrill of discovering and exercising his own intellectual powers — as much as any sense of wonder inspired by hitherto unsuspected patterns and meanings — was what made this moment such a memorable one. That thrill has been decisive for many a future mathematician. Bell describes how success in solving a problem posed by Fermat led Carl Friedrich Gauss, the renowned German mathematician, to choose between two careers for which he was similarly talented. ‘It was this discovery …which induced the young man to choose mathematics instead of philology as his life work.”…

For those readers who are interested:

  1. Who wants to be a mathematician:

http://www.ams.org/publicoutreach/students/wwtbam/wwtbam

2. Resonance Journal (India):

https://www.ias.ac.in/Journals/Resonance_%E2%80%93_Journal_of_Science_Education/

3. Ramanujan School of Mathematics; Super30 of Prof Anand Kumar:

http://www.super30.org/rsm.html

Cheers,

Nalin Pithwa

 

 

 

From Passive to Active Learning: India Today: Jamshed Bharucha: Aug 19 2019

(By Jamshed Bharucha; Vice Chancellor, SRM Amravati University)

https://www.indiatoday.in/magazine/education/story/20190819-from-passive-to-active-learning-1578655-2019-08-09

 

Interesting youtube channels to learn maths

 

https://interestingengineering.com/11-of-the-best-youtube-channels-for-understanding-mathematics